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Machine Learning (ML) for Database Systems

Oracle’s HeatWave

Index Tuning Graph ParitioningCardinality Estimation

Google’s AlloyDB MIT’s SageDB

Research

Practice

Challenge in AI Applications: 
Training and Testing Distribution Shifts (Drifts)



Workload Shifts

P(x): distribution of input data features

Data Shifts
(e.g., insert, delete, update)
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Shifts Lead to Regression

Example in TPC-H dataset

Join the “Order” and “Lineitem” tables

Previous distribution

New distribution
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State-of-the-art for Adaption in CE
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Scheme How

LM[1] Naru[3] Re-train

MSCN[2] Completely re-train or fine-tune model

DeepDB[4] Partial re-train

● Other DB tasks (e.g., [5] ) use apriori training

○ Ad-hoc

○ Domain insights

○ Overly general.



Goals
● Agnostic to ML Models

● Small Computation Overhead

● Quick Adaptation

Examples➡️



Drift Case 1: Workload Distribution Drift
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Drift Case 1: Warper with GAN (Generative Adversarial Network)
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Drift Case 1: Experiments

7.4x
7.1x 3.7x

• Black Box Models: LM (VLDB 19’), MSCN (CIDR 19’)
• Three datasets
• 12 new queries arrive per minute.

• Fine-Tune
• Hard Example Mining

• Mixture
• Augmentation (Add Noise)

• Warper (Ours)

Time  
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r



Drift Case 1: Summary

• Workload Drift
• Scenario: number of new query predicates is small
• Goal: adapt the black-box ML model quickly
• Solution: synthesize additional queries for the model

• However, what if the number of new queries is large?

Next Drift Case ➡️



Drift Case 2: Too Many to Label
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Drift Case 2: Warper with Picker
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Drift Case 2: Summary

• Workload Drift
• Scenario: number of new queries is large
• Solution: select novel queries with higher priority

• Both Drift Case 1 and Drift Case 2 are workload drift

Data Drift Case ➡️

A few queries
CPU is in idle

Lots of queries
CPU cannot label all



Drift Case 3: Data Shifted
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Drift Case 3: Solution (for Data Shift)
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Summary of These Drift Cases

● Drift Case 1: Too Few New Queries

● Drift Case 2: Too Many New Queries 

● Drift Case 3: Data Shift

Workload
Shift

Picker

Synthesis with GAN

● Workload and Data shifts can happen at the same time.
● Other different drift examples (scenarios), and End-to-End 

experiment with continuous drifts are shown in the paper. 



Related Work

● Active Learning

○ HAL (SIGMOD 19’), ADCP (SIGMOD 20’), Wilds (PMLR 21’), …

● Generative Adversarial Network (GAN)

○ Deep Learning: GAN (NeurIPS 14’), InfoGAN (NeurIPS, 16’), CycleGAN (ICCV 17’), 

StyleGAN2 (ECCV 20’), TransGAN (NeurIPS 21’)

○ DB: Relative Data Synthesis (VLDB 20’)



Conclusion

● ML for System also Suffers from Data and Workload Shifts

● Create Warper to Adapt for Cardinality Estimation
○ Low Computation Overhead
○ 3x – 6x Faster Adaptation in Slow. 
○ 1-2x Faster Adaptation in Fast.

● Future: Examine More Real Workloads in End-to-End Setting
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