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ABSTRACT
Eye tracking has become a powerful tool in the study of autism
spectrum disorder (ASD). Current, large-scale efforts aim to identify
specific eye-tracking stimuli to be used as biomarkers for ASD, with
the intention of informing the diagnostic process, monitoring ther-
apeutic response, predicting outcomes, or identifying subgroups
with the spectrum. However, there are hundreds of candidate exper-
imental paradigms, each of which contains dozens or even hundreds
of individual stimuli. Each stimuli is associated with an array of po-
tential derived outcome variables, thus the number of variables to
consider can be enormous. Standard variable selection techniques
are not applicable to this problem, because selection must be done
at the level of stimuli and not individual variables. In other words,
this is a grouped variable selection problem. In this work, we apply
lasso, group lasso, and a new technique, Sparsely Grouped Input
Variables for Neural Network (SGIN), to select experimental stim-
uli for group discrimination and regression with clinical variables.
Using a dataset obtained from children with and without ASD who
were administered a battery containing 109 different stimuli presen-
tations involving 9647 features, we are able to retain strong group
separation even with only 11 out of the 109 stimuli. This work
sets the stage for concerted techniques designed around engines to
iteratively refine and define next-generation biomarkers using eye
tracking for psychiatric conditions. http://github.com/beibinli/SGIN
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1 INTRODUCTION
Eye tracking (ET) has become well-regarded as a powerful marker
of cognition and human variability [Shic 2016], with several large-
scale ongoing efforts in progress to develop next generation biomarker
applications that use eye tracking for mental health applications
[Loth et al. 2017; Ness et al. 2019; Webb et al. 2019]. Key among
these efforts are validation studies aimed at studying the usability
of eye-tracking paradigms, typically designed for psychological
studies, to serve as markers of treatment response, predictors of lat-
ter outcomes, and subgrouping to identify subgroups most likely to
benefit from pharmacological or behavioral intervention [FDA-NIH
Biomarker Working Group 2016].

Standard psychological investigations using eye tracking in the
study of neuropsychiatric conditions rely on collection of eye-
tracking data during specific probes designed around psychological
or psychiatrically-relevant constructs, for example psychometric
investigations of attentional disengagement processes in attention
deficit hyperactivity disorder (ADHD) or free viewing of social
interactions in autism spectrum disorder (ASD) [Karatekin 2007].
Hundreds of different experimental paradigms have been developed
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to study such psychological phenomena, with many paradigms fo-
cused around specific areas of research enquiry related to, but not
defining of, psychiatric conditions of relevance. Each paradigm, in
turn, is composed of dozens or even hundreds of individual stimuli,
with each stimulus heterogeneous in its contribution to aggregate
statistical results.

A key question in the field is: given the myriad collection of di-
verse paradigms available as potential markers of a condition, with
each paradigm associated with multiple stimuli, and each stimulus
associated with multiple outcome measures, how can a parsimo-
nious subset of stimuli be selected to address a specific need? This
question is important both theoretically and practically. From the
theoretical side, identification of eye-tracking paradigms aligned
with specific targets (e.g. social interaction deficits in ASD) provides
illumination regarding the fundamental nature of the condition and
hints as to ultimate mechanism. From the practical side, use of an
eye-tracking paradigm for a specific purpose necessitates trade-offs
in usability: the longer the session associated with a biomarker, the
more burdensome that biomarker becomes, and the less likely it
will be to see practical implementation.

Adding to the complexity is the sheer volume of possible out-
come measures available within even a single eye tracking stimulus
presentation: while psychological studies typically define a small
number of primary outcome measures relevant to the question
under investigation, the flexibility of eye tracking is such that a
large number of possible measures can be derived, ranging from
properties of saccades and fixations, to rates of blinking, to tra-
versal patterns defined by their information theoretic properties.
This leads to a complex selection process, and, given the limited
sample sizes and data available to inform this process, necessitates
specialized techniques appropriate for large p small n.

In this paper, we aim to (1) apply and validate lasso, group lasso,
and Sparsely Grouped Input Variables for Neural Networks (SGIN)
algorithms to select eye-tracking stimuli; (2) find a subset of useful
eye-tracking stimuli to classify childrenwith andwithout autism; (3)
examine the possibility to select eye-tracking stimuli for predicting
directly-observed behavioral ratings of autism severity (ADOS)
and IQ, as well as parent-directed ratings associated with degree of
autistic symptomatology (SRS) and adaptive functioning (Vineland),
in children.

We review related literature on eye tracking and feature selection
in Section 2; introduce our eye-tracking paradigms, stimuli, and
outcome measures, the experiment design, the feature extraction
methods, and machine learning models in Section 3; and show our
results to reduce eye-tracking paradigms in Section 4. We discuss
the limitations of our work and future directions in Section 5, and
conclude our work in Section 6.

2 RELATEDWORK
2.1 Eye-Tracking for Children with ASD
In the last two decades, eye-tracking technology has been widely
applied in the autism research community to study joint [Navab
et al. 2012] and social attention [Guillon et al. 2014; Liberati et al.
2017], visual preference [Pierce et al. 2016], responses to dyadic
bids [Campbell et al. 2014], theory of mind capabilities [von dem
Hagen et al. 2013], facial expression recognition [Król and Król

2019; Sterling et al. 2008], attention preferences at both semantic
[Chen and Zhao 2019] and perceptual [Shic et al. 2007; Wang et al.
2015] levels, among other important abilities for individuals with
ASD [Frazier et al. 2017].

Several studies have applied feature selection to analyze pat-
terns of visual attention from eye-tracking data. For instance, Wang
et al. [2015] grouped the same eye-tracking features across different
stimuli together in order to characterize factors influencing visual
attention in individuals with ASD; Coutrot and Guyader [2017]
applied lasso and Expectation-Maximization to select features for
saliency maps. These studies provide insight for interpreting eye-
tracking behaviour and for identification of important features im-
pacting visual attention, but the development of practical tools for
application in neurodevelopmental and neuropsychiatric conditions
requires different foci, including the need to balance parsimony
and efficiency with effective operation.

The length of an eye-tracking session is almost solely attribut-
able to the number and length of stimuli trials presented to partici-
pants. A traditional eye-tracking battery can contain hundreds of
individual stimuli spread over multiple eye-tracking paradigms to
acquire data from children with ASD. However, such long experi-
mental batteries are often stressful for young children and infants.
Many children are unable to pay full attention throughout long
eye-tracking sessions. Shorter sessions are more tolerable, reduce
participant burden, improve data quality, and require less staff time
to administer.

Current methods for selecting stimuli and paradigms for eye-
tracking outcomemeasures usemore straightforwardwinnowing of
experimental batteries based on independent trial discriminability
[Frazier et al. 2018]. While already showing high promise, such
approaches do not leverage the full potential of machine learning
advances, which can implicitly consider interrelationships between
trials. However, care is warranted because machine learning and
statistical learning models can suffer from overfitting when the
number of features are too large, especially relative to the number of
subjects. Machine learning practitioners often apply regularization
to avoid overfitting. In this work, our goal is to apply this idea
further to reduce the number of stimuli for future eye-tracking
studies, leading to more parsimonious batteries tuned to specific
outcome goals.

2.2 Group Sparsity in Machine Learning
As discussed, removing highly-correlated paradigms and stimuli
can reduce tangible and intangible data acquisition costs and avoid
overfitting. Selecting eye-tracking stimuli can be considered as
a special case of feature selection in machine learning, which is
usually solved by imposing regularization to achieve sparsity. In
this paper, we say a group is sparse when all model parameter
weightings associated with the input variables in that group are
zero. Sparse groups are said to have been removed by the model.
We will say that a model has achieved sparsity when it has removed
groups of variables during training.

Sparsity has been studied in machine learning for decades, and
the lasso is perhaps the most famous example. The standard lasso
is a linear model that utilizes a λ-weighted l-1 regularization to
enforce sparsity in the model’s input variables [Tibshirani 1996].
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The group lasso (GL) introduces the notion of groups to extend
the standard lasso. Let X ∈ Rn×p be the matrix of n samples and
p features, y ∈ Rn be the vector of n labels, and β∗ ∈ Rp be the
vector of optimal model parameters.

β∗ = argmin
β

| |y −

k∑
i=1

Xiβi | |
2
2 + λ

k∑
i=1

√
pi | |βi | |2

As shown in the equation above, the group lasso partitions the p
features into k sets, each of which we will refer to as a group Xi for
i ∈ {1, . . . ,k}. Denote the cardinality of each Xi as pi so that we
can rewrite the matrix X = {X1,X2, ...,Xk } and parameter vector
β = {β1, β2, ..., βk }, where Xi ∈ Rn×pi represents pi features and
βi ∈ R

pi represents the associated parameters for group Xi . The
norm for regularization is not squared in the group lasso; otherwise,
it becomes weighted ridge regression.

In this paper, we will apply lasso and group lasso as the tra-
ditional machine learning methods to reduce the number of eye-
tracking stimuli for children with autism.

3 METHODS
3.1 Eye-Tracking Paradigms and Experiment
There are six types of eye-tracking paradigms in the experiment
with a total of 109 distinct stimuli. These stimuli were designed
by clinical psychologists and researchers to characterize features
known to be atypical or impaired in individuals with ASD. Par-
ticipants in this work watched these 109 stimuli during the eye-
tracking experiment with different counterbalancing orders. In this
study, our main goal is to test whether we need all 109 stimuli to
achieve satisfactory classification and regression performance. The
associated stimulus ID and number of features for each paradigm
are show in Table 1, and the paradigms are as follows:

• Activity Monitoring (AM) - Two actors engage in a play-
based activity while speaking to one another. This paradigm
taps into social motivation and understanding of shared play.

• Biomotion (BM) - Biological motion preference paradigm,
with a point-light-display of a human figure engaged in an
activity shown on one side of the screen, and a control set
of moving dots (either rotating or phase-scrambled) shown
on the other side of the screen. This paradigm taps into
primitive social preferences.

• Dyadic Bids (DB) - Three actors sit around a table while
having a conversation. Periodically, an actor turns and asks
a question directly to the camera, emulating a direct conver-
sational exchange with the participant. This task examines
sensitivity to overtures for social engagement by others.

• Dynamic Scenes (DS) - These are clips drawn from pro-
fessional, child-appropriate movies, edited to be 60 seconds
while preserving an overarching cohesive narrative. This par-
adigm examines more complex, naturalistic scene viewing
involving people engaged in a wide variety of tasks.

• Social Referencing (SR) - Scenes in which an actor en-
gaged in stressful activities (e.g. stacking a tall thin block
tower, inflating a balloon till near-burst). These episodes
depict the activities’ escalation (e.g. balloon continues to

Table 1: Paradigm types and the corresponding stimulus ID.
In the third column, we provide the average (and standard
deviation) number of features extracted from a stimulus
in the corresponding paradigm. The last column shows the
length of each stimulus in seconds.

Paradigm Type Stimulus ID # features Len

Activity Monitoring 1 - 12 50 (0.00) 20s
Biomotion 13 - 52 58 (2.41) 15s
Dyadic Bids 53 - 76 177 (3.89) 15s
Dynamic Scenes 77 41 (0.00) 60s
Social Referencing 78 - 93 48 (0.00) 15s
Theory of Mind 94 - 109 106 (8.64) 15s

expand), critical event (e.g., balloon pops and the pieces be-
gin flapping wildly), and resolution (e.g. actors sigh with
relief). This paradigm examines automaticity of information-
seeking from others.

• Theory of Mind (ToM) - A protagonist continuously en-
gages in search/play activities with specific objects while
a second, antagonist actor, unbeknown to the protagonist,
constantly and randomly interferes with the protagonist’s
goals. This paradigm gauges spontaneous interest in others’
intentions as well as comprehension of the mental frame and
perspective of others and is relevant for perspective taking
and associated skills.

We will first ignore the nature of these different eye-tracking
paradigms when applying machine learning algorithms, and then
wewill re-evaluate these six paradigms after finding suitable subsets
of stimuli to classify children with ASD and without ASD.

3.2 Data Acquisition
We recruited 64 children for this eye-tracking experiment (mean
age = 76.32 months, SD age = 16.3 months; 43 males, 21 females).
Thirty-two participants were diagnosed with ASD, and the other
thirty-two participants have different diagnostic labels including
typical development, language delay, and other developmental con-
cerns (non-ASD). There is no significant difference for age and
sex between the ASD and non-ASD population. Besides the diag-
nostic label of ASD or not, ADOS severity score, SRS total score,
and Vineland ABC Standard Score were obtained by clinicians
and trained psychometrists for 30 of the participants with ASD.
Stanford-Binet Intelligence Scale IQ test scores were obtained for
all participants.

The ADOS (Autism Diagnostic Observation Schedule) severity
score is a standardized measure of autism severity, administered
as a direct assessment of a child by a trained administrator, that
is held as a gold standard for clinical, genetic, and neurobiological
research [Gotham et al. 2009]. The SRS-2 (Social Responsiveness
Scale, second edition) aims to aid in diagnosis and treatment plan-
ning for autism, with a high SRS score indicating deficiencies in
reciprocal social behavior, which might lead to severe interference
with everyday social interactions [Bruni 2014]. This assessment is
questionnaire-based, and typically directed towards caregivers or
educators to answer about a specific child. The Vineland-3 ABC
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(Adaptive Behavior Scale) Standard Score, with a mean of 100 and
standard deviation 15, is based on “Communication", “Daily Living
Skills", and “Socialization" adaptive behavior domains for children
[Sparrow et al. 2016; Yang et al. 2016]. It is delivered by a trained
administrator to a caregiver as a structured interview. Several stud-
ies suggest IQ can be used as a predictor for young children with
autism [Charman et al. 2011; Harris and Handleman 2000; Mayes
and Calhoun 2003]. The Stanford-Binet Intelligence Scale is one
such validated measure of IQ, administered directly to a child by a
trained administrator. These four measurements provide different
yet important clinical and psychological information for partici-
pants with ASD.

In the eye-tracking experiments, an SR Eyelink 1000 Plus sam-
pling binocularly at 500 Hz was used for data collection. Exper-
iments were shown on a Samsung SyncMaster 2233RZ 22-inch
monitor running at 60hz (1680 x 1050 pixels). Participants were po-
sitioned 650 mm from the eye-tracking camera at the start of each
session. Experiments are programmed in Neurobehavioral Stimulus
Presentation in a comprehensive delivery system enabling both eye-
tracking quality control (multiple embedded 5-point calibrations)
and behavioral management (ability to spontaneously create breaks
using videos to manage non-compliant behaviors by participants).
Protocols for data acquisition were aligned with those described in
[Webb et al. 2020]. 95% trimmed mean calibration error was 0.751
visual degrees. No specific instructions were given to participants
except to watch the screen. Thus the interpretation of administered
trials relied on the characterization of passive (or implicit) atten-
tional process inherent to the individual during stimulus display.
Individuals with ASD are differentially impacted by the nature of
verbal instruction, e.g. as observed in tests of intelligence [Dawson
et al. 2007], and as such passive viewing studies without explicit
verbal direction have some of the greatest applicability across levels
of function as well as age in the study of neurodevelopment.

3.3 Feature Extraction for Eye-Tracking Data
In the post-hoc analysis, we apply the Dynamic Programming on
Distance Dispersion fixation identification [Li et al. 2016] algorithm,
using partial fixations weighted by the number of gaze points within
each region, and region-of-interest (ROI) analysis to obtain clean
features. Quality control measures include calibration accuracy,
calibration stability, and data collection rates. Participants’ mean
fixation time, number of fixations, saccade duration, time of first sac-
cade, valid ET duration (samples collected within a ROI multiplied
by the sampling rate), percentage of gaze on screen, percentage
of missing data, gaze data quality, and other oculomotor features
are extracted for each paradigm. These oculomotor statistics are
also evaluated for multiple ROIs and within specific time windows
corresponding to events of interest in stimuli. The list of derived
results to be considered was not exhaustive, but rather reflected
specific, high-level perspectives on variables of note that were ex-
pected to provide separation of ASD/non-ASD groups and utility
in the monitoring and tracking of intervention effects in children
with ASD.

For example, ROIs are annotated by experts for each frame of
video stimuli, with no composite regions overlapping but with
the inclusion of combined variables (e.g. head = eyes + mouth +

hair + skin). For the Activity Monitoring, Dynamic Scenes, and
Social Referencing paradigms, oculomotor features on each ROI are
extracted and include regions such as bodies, heads, eyes, mouths,
activities, and distractors. For the Dyadic Bids and Theory of Mind
paradigms, visual response latency for events that occur in the
paradigms are additionally included. For the Biomotion paradigms,
the ROI is defined by the screen location (i.e. left, right) and the
nature of the region (biological or control condition). Visual latency
to orient to biological motion is also included.

A total 9647 features are extracted from the 109 stimuli. We
arrange these 9647 features into 109 groups, where each group of
features corresponds to one eye-tracking stimulus. As shown in
Table 1, most groups have less than 50 features, and 34 groups have
more than 100 features.

3.4 Machine Learning Details
After obtaining eye-tracking features from the post-hoc fixation and
ROI analyses, we impute missing values by using the unsupervised
Expectation-Maximization algorithm [Dempster et al. 1977].

Our eye-tracking paradigm selection problem suffers from “curse
of dimensionality" with p >> k > n, where the number of features
(p = 9647) is much larger than the number of samples (n = 64),
and the number of groups (k = 109) is also larger than the number
of samples. Because of the large group size, we expect that the
machine learning models can learn to remove most of the groups.

We use 1ŷ>0.5 to represent positive predictions in binary classi-
fication problems. In regression tasks, we normalize the labels to
the range [0, 1] so that all the measurements can be compared on
the same scale.

We use 10-fold cross-validation to validate the machine learning
models. We acknowledge that the validation performance might
be over-optimistic and does not represent real-world performance
for ASD/non-ASD classification. ASD is a diverse and complex
disorder that is diagnosed behaviorally by clinicians, a process that
requires significant effort and professional training. We use the
same training/validation split for all models in the experiment so
that the comparisons between different machine learning methods
are fair. We also normalize all features based on the training set
before each cross-validation.

Lasso is agnostic to the definition of groups; so, we say a group is
identified as sparse by lasso if lasso identifies all features as sparse
in the given group.

We use accuracy, precision, recall, and Area Under the receiver
operating characteristic Curve (AUC) score to evaluate classifica-
tion results, where participants with ASD are considered positive
samples. We use Pearson correlations, which range from -1 to 1, to
evaluate regression tasks (with random guessing producing r=0).
We use the average number of sparse groups in the 10-fold cross
validations as the result for one regularization term λ.

3.5 Sparsify Grouped Variables in Neural
Network

In the last decade, neural networks (NNs) have gained popularity
and tend to outperform linear models when data is not linearly
separable. Feng and Simon [2017] and Scardapne et al. Scardapane
et al. [2017] applied group l-1 regularization for neural networks to
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reduce input features individually without considering the group
nature of features. In this work, we extend the regularization to
multi-layer, non-linear NNs and ensure sparsity for grouped input
variables, imposing group l − 1 regularization on both the input
layer and the first hidden layer. This model is named Sparsely
Grouped Variables in Neural Network (SGIN). Different from [Meier
et al. 2008; Yuan and Lin 2006] and related studies whose primary
goal is regularization, SGIN focuses on removing groups of input
variables in order to reduce the information a machine learning
system requires during inference and to ease the expense of future
data collection.

Figure 1: Sparsity for grouped input variables in neural net-
works. The top row is the input layer; the bottom row is the
first hidden layer; dashed lines stand for connections that
can be removed to satisfy the sparsity constraint if group
3 is redundant (and thus group 3 could subsequently be re-
moved in the final machine learning pipeline).

Denote J as the element-wise loss and ϕ as an arbitrary loss
function in a machine learning system. We define the optimization
goal for β , the vector of all parameters in the NN model f , and the
regularization term τ as follows.

β∗ = argmin
β

J (β) + λτ = argmin
β

ϕ(f (X ),y) + λτ (1)

τ =
k∑
i=1

τi =
k∑
i=1

√
pi | |θi | |2 (2)

Here θ ∈ Rp×q is the matrix of parameters in the first layer of the
NN, q is the number of neurons in the first hidden layer, and θ ⊂ β .
We let θi ∈ Rpi×q be the parameters between the input variables
in group i and all neurons in the first hidden layer. The τi is the
Frobenius norm of the θi matrix rather than the norm of the βi
vector. When k and p are equivalent, each group is composed of one
q-dimensional feature vector, and τ reduces to the regularization
of the first hidden layer in [Scardapane et al. 2017], an effective
method to prune neurons from NNs.

Different from other methods in l-1 regularization for neural
network, SGIN provides an efficient algorithm, Stochastic Block-
wise Coordinated Gradient Descent, to optimize their loss function
by leveraging existing techniques in coordinate descent, blockwise
coordinate descent, and stochastic gradient descent. The new opti-
mization algorithm converges faster and finds more sparse groups
than the traditional stochastic gradient descent algorithm in empir-
ical experiments.

In this study, we will compare these linear and non-linear ma-
chine learning models in their ability to reduce eye-tracking stimuli
needed for targeting prediction of clinical variables relevant to
studies of individuals with autism.

We use the same hyperparameters (e.g. neural network structure,
learning rate scheduling, number of epochs, etc.) for all experiments
involving neural networks. For simplicity, we try 1-hidden layer,
2-hidden layer, and 3-hidden layer neural network before the exper-
iments, and then choose the 2-hidden layer neural network (3000
and 500 neurons in the 2 hidden layers respectively) because it has
the fastest training convergence.

We do not use bias in neurons in the first hidden layer for im-
plementation convenience, but we use bias for all other layers.
Scardapane et al. [2017] also claim that removing the bias term
would not affect prediction results. We use ReLU activation for all
hidden layers in all experiments for consistency, and the results
with Sigmoid activation are similar. Based on convergence of train-
ing loss ϕ(f (X ),y), we use initial learning rate η = 0.1, train SGINs
for 5 epochs, and decrease the learning rate by 50% after each epoch.
We use a batch size of 64 for the ASD/non-ASD classification and a
batch size of 1 for the regression tasks.

The Institutional Review Board (IRB) from Yale University and
the IRB from Seattle Children’s Research Institute approved our eye-
tracking experiments, data acquisition and data analyses protocols.
The eye-tracking data processing pipeline, which is implemented
in C++, Matlab, R, and SPSS, along with the data used in this study,
is available upon request.

Code for the machine learning experiments are open-sourced
in http://github.com/beibinli/SGIN. We use PyTorch [Paszke et al.
2019] to implement the neural networks and SGIN. We also use
sklearn for the lasso and pyglmnet [Jas et al. 2020] for the group
lasso. All these packages are used in Python 3.6. Details of this im-
plementation, optimization algorithm, and additional applications
of SGIN are presented in [Li et al. 2019].

4 RESULTS
4.1 Classification of ASD versus Non-ASD
Our result in Figure 2 suggests that even when 89.9% of the groups
are removed (i.e. 99 paradigms are removed), SGIN can still achieve
a satisfactory classification result (78.13% accuracy and 82.91% AUC
score). The lasso is able to find group sparsity, but its performance is
about 15% worse than SGIN (65.6% accuracy and 70.8% AUC score)
with 71 stimuli removed. The group lasso performs similarly to
SGIN (79.71% accuracy and 79.72% AUC score) on average, though
it struggles to learn fewer than 60 groups, even after tuning λ
(as shown in Figure 2f), which makes it difficult to interpret the
least important groups of features: that is, the group lasso either
removes no groups or many, and rarely anything in-between. In the
ablation study, using Stochastic Gradient Descent on Loss 1 directly
performs worse than SGIN and cannot find redundant groups for
this problem.

Even with only 11 groups of variables (out of the original 109
groups), SGIN still achieves good accuracy and AUC on the valida-
tion set. This result suggests that substantial redundancy exists in
the 109 paradigms: even using a small subset of these paradigms,
the eye-tracking experiment can still be effective in between-group
classification. Though these methods remain to be validated on
larger, unseen test cases, our result suggests that SGIN has the
potential to help design more streamlined eye-tracking batteries
and select better eye-tracking paradigms in the future.

http://github.com/beibinli/SGIN
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(a) Accuracy (b) AUC

(c) Precision (d) Sensitivity

(e) Specificity (f) λ tuning for GL

Figure 2: Validation Results for ASD/non-ASDClassification

To compare with other popular machine learning methods in the
autism research community, we run Support Vector Machine (with
both linear and RBF kernel), decision tree, random forest, and other
models for 100 runs each. The SGIN can achieve the best validation
accuracy among all methods in all runs, while other linear methods
(linear regression, logistic regression, and SVM with linear kernel)
also have similarly high performance (around 84% accuracy), possi-
bly because the stimuli were already carefully selected and designed
to study children with ASD. However it is important to note that
these methods would result in no sparsification. Group lasso has
similar distributionwith SGIN, but SGIN is the onlymethod that can
effectively select stimuli and obtain high accuracy simultaneously.

4.2 Paradigms Selected by SGIN
In our experiment, all machine learning models could not guarantee
the selected paradigms are the same across runs with different
training data, because this is a p > n problem such that the optimal
solution may not be unique. Nevertheless, we run lasso, group lasso,
and SGIN for 100 runs each with bootstrap. Then, we count the
number of times a paradigm is discarded (sparsified) in all runs.
The group lasso is unstable with the bootstrap runs, and most of its
runs fail to identify redundant groups. On the other hand, lasso and
SGIN agree with each other for most stimuli, as shown in Figure 3,

We compare the probability that a given paradigmwould be spar-
sified in Table 2. Among the six eye-tracking paradigms, Dyadic
Bids is the most useful one identified by all three models. Surpris-
ingly, Social Referencing has the largest possibility to be discarded
by the machine learning algorithms.

Table 2: Probability a paradigm would be sparsified by the
machine learning algorithms. The table is sorted by the
probability from SGIN.

Paradigm Type P(discard)
Lasso Group lasso SGIN

Dyadic Bids 38.17% 3.08% 24.96%
Theory of Mind 58.19% 5.50% 49.62%
Activity Monitoring 73.17% 6.00% 65.25%
Biomotion 77.50% 5.88% 66.72%
Dynamic Scenes 89.00% 6.00% 71.00%
Social Referencing 86.44% 5.94% 72.00%

Both Dyadic Bids and Theory of Mind contain features for visual
latency, and coincidentally these two stimulus types are the two
most used paradigms identified by the machine learning models.
Biomotion also contains visual latency features, but it does not
contain features for gaze on more discrete ROIs like heads, faces,
eyes, and bodies. The features extracted in Dyadic Bids and Theory
of Mind may contain features extracted from other paradigms, and
perform slightly better than those other paradigms, such that the
machine learning models preferentially select stimuli from Dyadic
Bids and Theory of Mind. More studies are needed to test the
robustness of these paradigms.

Figure 3: Stimuli discarded in 100 bootstrap runs: (Left): Re-
sults from lasso; (Middle): Results from group lasso; (Right):
Results from SGIN. The x-axis is the Stimulus ID, and y-axis
is the times the corresponding paradigmhas been discarded.

4.3 Importance of Eye-Tracking Features
Examination of important eye-tracking features is useful for under-
standing the specific visual attention properties that characterize
children with autism versus those without. We adopt SHAP (SHap-
ley Additive exPlanations) value [Lundberg and Lee 2017] to inter-
pret the importance of features in our trained neural networks. The

importance is defined as Vp = 1
n

n∑
i=0

|sp (Xi )| for feature p, where

sp (Xi ) is the SHAP value for feature p with participant i .
Based on this approach, the top 10 important features are shown

below, where the corresponding paradigm name is included in
parenthesis:

(1) gaze duration toward activities in Stimulus 9 (AM);
(2) gaze duration on biological movements in Stimulus 37 (BM);
(3) proportion of events meeting quality requirements (i.e. good data)

in Stimulus 58 (DB);
(4) response latency to non-biological motion in Stimulus 40 (BM);
(5) start time of the 4th fixation (post pre-attentive exploration) in

Stimulus 66 (DB);
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(6) start time of the 9th fixation (late exploration) in Stimulus 67 (DB);
(7) gaze duration toward eyes in Stimulus 59 (DB);
(8) start time of the 10th region explored in Stimulus 73 (DB);
(9) latency to first orient to the body in Stimulus 105 (ToM)";
(10) number of fixations toward the eyes of the actor with direct gaze in

Stimulus 58 (DB).

From this analysis, we find that quality control, ROI looking dura-
tion, fixation, and exploration statistics are all important for ASD
classification. Overall, validity of gaze is important because children
with ASD can provide poorer quality data due to non-compliance
and attention issues during presentation of socially-oriented scene
content (e.g. see [Chawarska et al. 2012]). Similarly, latency in the
Biomotion paradigm provides useful information for understanding
ASD phenotypes (e.g. see [Umbricht et al. 2017]). Stimuli indexed by
SGIN may be reflective of individual trials comprising experiments
which may be particularly good examples of the experimental class.

4.4 Predicting ADOS, SRS, Vineland, and IQ
The eye-tracking paradigms were originally designed to provide
separation between children with ASD versus non-ASD children.
Thus, the machine learning performance in the previous section
is relatively high. We want to see whether these paradigms are as
effective when used to predict IQ, ADOS, SRS, and Vineland scores.

SGIN sparsifies the most groups for all the regression tasks. How-
ever, the performance of both of these methods was quite poor, with
neither SGIN or lasso fitting above chance for predicting ADOS
scores, Vineland scores, or SRS scores. However, SGIN (r = 0.54,
p < 0.0001***) successfully predicted IQ scores. This suggests that
predicting relative levels of social and adaptive impairment (as
indexed by ADOS, SRS, and Vineland) is a challenging problem. Fu-
ture studies may need to consider stimuli specifically designed for
this problem, and/or new techniques to more appropriately model
these outcomes. IQ levels are an important outcome measure for
understanding the clinical phenotypes of children with ASD, and
though the effects are modest, they suggest that eye tracking has
the potential, when combined with appropriate sparsification and
regression techniques, to lead to efficient methods for obtaining
clinically-relevant features across an array of clinical considera-
tions.

Figure 4: RegressionResults for 40 cross-validation runs: the
x-axis is the number of sparse groups, and the y-axis is the
corresponding correlation coefficient r .

5 DISCUSSION AND FUTUREWORK
In all the experiments, SGIN achieves the top or comparable-to-the-
top performance. By using a multi-layer non-linear neural network
structure as the base inference model, SGIN can achieve high per-
formance while excluding redundant groups. Even if the training
data is linearly distributed, SGIN still has advantages over lasso and
group lasso in terms of parsimonious representation and selection
of eye-tracking stimuli to be used in prediction. When consider-
ing the problem of using eye-tracking data to distinguish between
ASD and non-ASD groups, it is important to note that selecting a
particular feature for a paradigm in an eye-tracking experiment
is considered a pivotal task to inform our understanding of the
underlying mechanism. Further organizing paradigms into smaller
subgroups can help clinicians and researchers to study these poten-
tial biomarkers more efficiently. These explorations require sparsity
in bi-level, hierarchical, tree-structure, and overlapping groups. In
addition, while temporal information was implicitly included in
features through expert organization (i.e. extraction of variables
during specific events in stimuli presentation, such as the moment
an individual began speaking), data-driven approaches towards
isolation of critically informative timing periods is an important
avenue for future work.

We only recruited 64 participants for our experiments, and only
30 participants had full ADOS, Vineland, and SRS measurements.
Even though this proof-of-concept study shows promising results
from SGIN,more studies are needed to fully investigate eye-tracking
features and meaningful biomarkers for children with ASD. Specifi-
cally, the limited power provided by the small sample of children
with ASD to predict autism symptomatology may need to be ex-
panded to characterize well-known heterogeneity effects in ASD
[Campbell et al. 2014; Chawarska et al. 2014; Happé et al. 2006]. It
is important to note that results presented in this manuscript may
reflect developmental properties of ASD specific to the school-age
period. Much work still remains before these techniques, and eye
tracking in general, can be used in a practical fashion for optimizing
treatments and for prediction of longer term outcomes [Shic 2016].

6 CONCLUSION
In this study, we compare lasso, group lasso, and SGIN to select
eye-tracking stimuli in an experiment for children with autism. The
results of our experiment suggest that SGIN can achieve sparsity
in grouped input variables for neural networks while maintaining
high accuracy in group prediction. In particular, SGIN can classify
children with and without ASD with reasonable accuracy with
89.9% of the eye-tracking stimuli removed. SGIN also outperforms
lasso in regression of IQ, but more studies are needed to support
this result. Future work can design additional tests and structures
to examine the robustness of selected stimuli and adaptations to
identify more successful methods for prediction of ADOS, SRS, and
Vineland scores.
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