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Abstract

Researchers use fixation identification algorithms to parse eye
movement trajectories into a series of fixations and saccades, sim-
plifying analyses and providing measures which may relate to cog-
nition. The Distance Dispersion (I-DD) a widely-used elementary
fixation identification algorithm. Yet the ”optimality” properties of
its most popular greedy implementation have not been described.
This paper: (1) asks how ”optimal” should be defined, and advances
maximizing total fixation time and minimizing number of clusters as
a definition; (2) asks whether the greedy implementation of I-DD is
optimal, and shows that it is when no fixations are rejected for being
too short; and (3) we show that when fixation time rejection crite-
rion are enabled, the greedy algorithm is not optimal. We propose
an O(n2) algorithm which is.
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1 Introduction

People look at an object longer when they are interested in that
object. In eye-tracking analysis, we want to identify these fixa-
tions from a stream of eye tracking spatial temporal coordinates.
The goal of fixation identification is to reduce the complexity of
eye-tracking data while maintaining the essential components for
cognitive and visual processing analyses [Salvucci and Goldberg
2000]. Moreover, both online and offline eye tracking calibrations
are often based on fixations.

There are many popular fixation identification algorithms, and we
use the Distance Dispersion Fixation Identification Algorithm (I-
DD) [Salvucci and Goldberg 2000; Shic et al. 2008] to analyze eye-
tracking data here. I-DD states that any two points inside the same
fixation should be at most ε◦ away from each other. The most used
I-DD algorithm is greedy in nature: it begins with the first gaze
point, finds the temporally furthest gaze point no more than ε◦ from
any prior points, identifies this group as a fixation, and deletes them
from dataset. Worst case running time of greedy I-DD algorithm
is O(n2) because of distance matrix calculation. Often researchers
set a minimal fixation time rejection threshold so that extremely
short fixations, considered to be non-physiological, are rejected and
identified as saccades.
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Despite its straightforward nature, the I-DD algorithm suffers from
some ambiguity. Beyond issues related to parameter selection [Shic
et al. 2008], it is unclear whether greedy identification of fixation is
arbitrary, given space of all possible identifications. In recognition
of this issue, we propose two goals for an optimal fixation identifi-
cation solution:
Goal G1: maximize total fixation time. In theory, a fixation should
be identified when the ε◦ criterion is met. A maximal total fixation
time criterion is closely aligned with this principle.
Goal G2: minimize the number of fixations. This is a parsimony
principle: points should be considered part of the same ε◦-limited
cluster whenever possible.

2 Optimality without Time Rejection

Is the greedy I-DD algorithm optimal for the two goals G1 and
G2 discussed in Section 1? Let’s assume minimal fixation time
rejection threshold is not used in this section, and we will add this
threshold in the next section.

Without time rejection, a saccade is considered as a fixation by it-
self. The greedy I-DD satisfies G1 because it puts every point in
a fixation, and hence total fixation time is equal to the eye tracker
recording time. However, does it also satisfy G2? Yes, we can
re-articulate the problem and prove this claim.

Problem: Given an array of n gaze points (p1, p2, p3, ..., pn), we
want to find the minimum number of fixations (clusters) according
to the I-DD definition that cover all of the gaze points.

Algorithm: We will use set S to record all fixations in our algo-
rithm, where set S contains the start points of every fixation. Once
we know where a fixation starts, we can know which points are cov-
ered by the fixation, because the greedy I-DD will group all of the
possible points that the first point can cover.

1. S = {}; // empty set
2. i = 1;
3. S = S ∪ {pi};
4. Using distance dispersion threshold, find all the consecutive
points (i.e. pi, pi+1, ..., pi+j) that can be covered by the same
fixation as pi.
5. i = i+ j + 1;
6. If i < n, Goto Line 3; else, output set S.

Claim: The Greedy I-DD described above produces an optimal so-
lution for G2, i.e. minimum number of fixations.

Proof: Prove by contradiction. Assume optimal solution is S∗, and
|S ∗ | < |S|, where S is the output of our algorithm.

Sort all points in S and S∗ in time order. S∗ =
{pa∗, pb∗, pc∗, pd∗, pe∗, ...}, S = {pa, pb, pc, pd, pe, ...}.

Without loss of generality, assume the first point differs in S∗ and
S are pd∗ and pd.

It’s easy to see pd∗ < pd; otherwise if pd∗ ≥ pd, some points
between pd∗ and pd are not covered in S∗.
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Therefore, pd’s fixation covers more than pd∗’s fixation, which
means pe∗ ≤ pe.

For the same reason, pf∗ ≤ pf . S will cover faster than S∗, and
S∗ is no better than S.

The assumption is false. Thus, our algorithm produces the optimal
result.

3 Time Rejection and DP Algorithm

In real eye-tracking analysis, we would not identify one gaze point
as a ”fixation”; instead, the point would be regarded as a saccade.
We usually reject gaze groups that last less than 100 ms because
most fixations last longer than that [Salvucci and Goldberg 2000].
For eye trackers with constant recording frequencies, minimal time
rejection is equivalent to the minimum number of points in a fixa-
tion rejection (without considering data lost). So, for simplicity, we
will use minimum number of points in a fixation as the threshold
in our analysis, and we will calculate the total number of fixation
points instead of total fixation time. The algorithm and proof re-
main the same even if we consider the data lost.

Is the greedy I-DD algorithm still G2 optimal with time rejection
threshold? No, because the optimal G2 solution would identify
each gaze point as one group and then reject all gaze groups (hence,
0 fixation as result). So, G2 is not rational as a goal for this scenario,
hence we want to use G1 as the goal in this case. Then, is the greedy
I-DD optimal in terms of G1? The answer is still no, because of the
counter-example shown in Figure 1. If we try to compare every pos-
sible partition of the gaze data, we can satisfy the G1 optimization,
but the run time is exponential to the input data.

The next question is: can we find an algorithm to modify the I-DD
and solve this problem ”efficiently”? Luckily, the problem is not NP
Hard, and here is a O(n2) time complex and O(n) space complex
algorithm that is based on dynamic programming and divide and
conquer. We will call it the ”Dynamic Programming on Distance
Dispersion Fixation Identification Algorithm” (I-DP-DD).

Algorithm Idea: Reject all groups of gazes that have less than λ
points and identify them as saccades in our algorithm.

Define f(i) = the index of first point that point pi can cover re-
versely (run the original greedy algorithm in reverse).

Define S(i) = the optimal solution (number of points covered by all
fixations) for points p1, p2, ..., pi.

Then, we have the relationship:

S(i) = max
f(i)−1≤j<i

[S(j) +

{
i− j if (i− j ≥ λ)
0 otherwise

]

The algorithm builds from f(n) to f(1), which takes O(n2) time.
We know S(i) = 0 for all i < λ. Then, we can build from S(1)
to f(n), where S(n) is the final solution. Building the S array also
takes O(n2) time.

This algorithm is as fast as calculating distance matrix, which also
takesO(n2) time. This dynamic programming improvement for the
I-DD may not be the simplest solution, and computer scientists can
try to find cleaner algorithms to satisfy G1 in the minimal fixation
time rejection scenario.

4 Conclusion

Without minimal time rejection and other rejection standards, the
greedy I-DD can identify the least number of fixations for eye track-
ing data. However, with minimal time rejection, the minimal num-

Figure 1: Counter example: Suppose there should be at least 3
points in one fixation. The greedy I-DD will produce the result on
the lefthand side, which has one fixation with points 1,2,3, and 4
with a total of 4 points in all fixations. However, the optimal solu-
tion on the righthand side has two fixations, where the first fixation
has points 1, 2, and 3, and the second fixaiton has points 4, 5, and
6 with a total of 6 points in all fixations.

ber of fixations could not be used as a goal for the distance disper-
sion algorithm. Instead, Dynamic Programming could be used to
improve the I-DD and produce the maximal total fixation time.

5 Discussion

Future work can try to improve the greedy I-DD algorithms and ap-
ply them to different scenarios. Online and offline fixation identifi-
cation algorithms can be compared together. Researchers can also
use G1 and G2 to analyze other fixation identification algorithms.

As discussed in Introduction, maximizing the total fixation time and
minimizing the number of fixations are good goals for fixation iden-
tification. Is there any ways to combine them together? We might,
for instance, consider G2 is subservient to G1, with a modified cri-
terion that selects the minimal number of fixation after maximizing
fixation time. Future studies can work on finding a gold standard or
optimal goal for fixation identification.

Most fixation identification algorithms can be classified as either
dispersion-based or velocity-based algorithms. Researchers and
scientists can try to find other type of algorithms to solve the prob-
lem; for instance, Li and his colleagues modified the classical DB-
SCAN algorithm for fixation identification, combining the advan-
tages from distance and velocity algorithms [Li and Shic 2016].
Future work could focus on the development of new algorithms in
conjunction with formalism on optimality criteria.
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