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Abstract

This paper modifies the DBSCAN algorithm to identify fixations
and saccades. This method combines advantages from dispersion-
based algorithms, such as resilience to noise and intuitive fixational
structure, and from velocity-based algorithms, such as the ability to
deal appropriately with smooth pursuit (SP) movements.
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Concepts: •Theory of computation → Unsupervised learning
and clustering; •Computing methodologies→ Cluster analysis;

1 Introduction

Scientists have become increasingly interested in oculomotor fixa-
tion identification algorithms because these properties of eye move-
ments have been associated with visual cognition [Liversedge and
Findlay 2000]. The goal of fixation identification is to reduce the
complexity of eye-tracking data while maintaining the essential
components for cognitive and visual processing analyses [Salvucci
and Goldberg 2000; Shic et al. 2008]. Most fixation identification
algorithms can be classified as either dispersion or velocity based;
we will use the Distance Dispersion Algorithm (I-DD) [Salvucci
and Goldberg 2000] and the Velocity Threshold Method (I-VT)
[Sen and Megaw 1984] as representatives of these algorithms.

These classic algorithms have limitations. Distance-based algo-
rithms rarely identify SP. However, SP movements might share un-
derlying cognitive and neural processes with fixations, and being
able to group such movements appropriately with fixations could
be advantageous [Krauzlis and Miles 1996]. On the other hand,
Velocity-based algorithms can be susceptible to noise. Researchers
continue to seek better methods to address these flaws. Sun and col-
leagues integrated DBSCAN and mathematical morphology clus-
tering (MMC) to group drivers’ gaze fixations [Sun et al. 2015],
but ignored the temporal dimension, which is a crucial property of
eye-tracking data. This paper modifies the DBSCAN algorithm for
fixation identification analysis and compares it with I-DD and I-VT
in Section 4.

2 Modified DBSCAN

DBSCAN is more complex than traditional fixation identification
algorithms because it distinguishes core points, border points, and
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noise in a dataset. Two parameters are required for it: a dis-
tance (ε) and a minimum number of points (minPts). Point p
is a core point if at least minPts points are within distance ε
to it, and these minPts points are directly reachable from p.
Points p and q are density reachable if there is a chain of points
p0 = p, p1, p2, . . . , q = qk, where pi is directly reachable from
pi−1 for all i > 0. A core point forms a cluster with all of its den-
sity reachable points. The points not belonging to any clusters are
considered noise.

Fixation identification relies on the temporal properties of gaze data
in eye-tracking analysis. Participants may stare at the same lo-
cation several times, and these fixations should be analyzed sep-
arately rather than as a whole. Moreover, if different saccades pass
over the same region repeatedly, clustering algorithms that ignore
the temporal dimension could mistake the intersection of these sac-
cades as a fixation, leading to incorrect interpretations. Therefore,
we modified the definition of core point in DBSCAN. Point p is
a core point if: 1. at least minPts points are within distance ε
to point p; and 2. these points form a consecutive subsequence
p0, p1, . . . , pk of the dataset, where pi and pi−1 are adjacent in
time. The pseudo-code is provided below. More information can
be found at https://github.com/BeibinLi/MDBSCAN

# eps = epsilon
func dbscan( vdata, eps, minPts):
for p in data:
if ( p is visited ): continue;
neighbors = regionQuery(p, eps);
if (neighbors.size < minPts): p is noise = true;
else:

C = expandCluster(p, neighbors, eps, minPts);
Recognize C as one fixation;

func expandCluster(p, neighbors, eps, minPts):
Set C = {p}
for (Point p’ in neighbors ):

if ( p’ is visited ): continue;
if ( p’ is not clustered ):

C.add(p’); # add p’ to a cluster
neighbors2 = regionQuery(p’, eps)
if (neighbors2.size >= minPts):

neighbors.union(neighbors2)
return C

func regionQuery(p, eps):
Array ngb; # neighbor
ngb.push_back(p);
p’ = p;
while( p’ = p’ next point ):

if( distance(p, p’) <= eps ): ngb.push_back( p’ );
else break;

p’ = p;
while( p’ = p’ previous point ):

if( distance(p, p’) <= eps ): ngb.push_front( p’ );
else: break;

return ngb;

This modification allows us to apply DBSCAN to fixation identi-
fication problems. The regionQuery function in the original DB-
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SCAN algorithm was redesigned to query the adjacent neighbor
points. The worst case complexity of this algorithm is O(n2). The
two parameters, ε and minPts, are closely related to the density
of eye-gaze points. Theoretically, the choice of ε and minPts
should be related to the visual angle and frequency of the eye
tracker. Practically, the two parameters can be simplified into one
because minPts does not influence results significantly if it is not
extremely small [Ester et al. 1996]. We observed that the results for
MDBSCAN are similar if 100 > minPts > 10.

3 Subjects and Stimuli

We applied fixation identification algorithms to two databases: a
complex sample comprised of 2-year-old children with and without
Autism Spectrum Disorder (ASD, n=38) and a large dataset with
179 subjects hand-verified for fixations and saccades through semi-
manual coding program GraFix [de Urabain et al. 2014].

We set minPts = 20. We also set ε to half of the classical dis-
tance threshold dmax, i.e. ε = 0.5◦ in our analysis. A distance
threshold of 1◦ was used in I-DD based on prior recommendations
for psychological research [Blignaut 2009]. A velocity threshold of
30◦/secwas used in I-VT. Fixations less than 100 ms were rejected
in all these algorithms based on the evidence that most eye fixations
last more than 100 ms [Salvucci and Goldberg 2000]. When com-
paring our results with GraFix data, we implemented GraFix’s fix-
ation merge and RMS rejection methods in all the three algorithms.
It should be noticed that GraFix uses I-VT as the underlying fix-
ation identification algorithm, which means I-VT should produce
similar results for GraFix software.

4 Results and Analysis

I-DD cannot identify SPs, while I-VT might produce fixations with
only a few consecutive points [Salvucci and Goldberg 2000]. More-
over, the eyeball’s movement speed varies in a large range, which
can cause difficulty in choosing a single velocity threshold (e.g.
30◦/sec for static image, but 50◦/sec for SP.

For ASD, we computed temporal fixation overlap statistics for
repeated 5-point calibration and identified between-algorithm dif-
ferences with linear mixed models (LMM) (Bonferroni corrected)
[F(2,487.9)=129.0,p < .001]: MDBSCAN (M=4.1,SD=1.5)
= I-DD (M=4.0, SD=1.5))>I-VT (M=2.2,SD=1.9)(p < .001),
suggesting default I-VT parameters were inadequate for identi-
fying fixations in this challenging sample. For SP, we compared
percent SP trajectory coverage [F=13.2,p<.001] finding (MDB-
SCAN (M=77%,SD=25%) = I-DD (M=73%,SD=26%))>I-
VT (M=63%,SD=32%). We computed # of fixations
[F=155,p<.001], finding MDBSCAN (M=7.5,SD=2.6)<I-VT
(M=10.9,SD=6.8) < I-DD(M=21.2,SD=10.4), and coverage/fixa-
tion [F=135,p<.001], finding MDBSCAN (M=12.7%,SD=6.7%)
< I-VT (M=7.1%,SD=2.4%)<I-DD(M=4.2%,SD=1.3%). This
suggests MDBSCAN has advantages during SPs.

For the GraFix data, we used LMMs to compare MDBSCAN,
DD, and I-VT algorithms using GraFIX as a baseline. Algorithms
differed in mean fixation time [F(2,178)=5.4,p<.01; IVT clos-
est to GraFIX], Number of fixations/sec [F=18.1,p<.001; MDB-
SCAN closest], and percentage time in fixations [F=10.3,p<.001;
DD closest], suggesting unique features of each algorithm. While
MDBSCAN was not always closest to ground truth, determining
”what is best” would require algorithm parameter search based on
experimental, subject, and outcome measure properties. So, I-DD,
I-VT, and MDBSCAN identifies different properties in gaze data.

MDBSCAN closely resembles I-VT and I-DT. If we set minPts

to 3, the MDBSCAN becomes I-VT, where ε defines the velocity
threshold. On the other hand, if we only take one core point in one
fixation with its directly reachable points and disable the Expand-
Cluster function, the MDBSCAN becomes similar to I-DD.

5 Conclusion

Future studies can work on finding a golden standard to evaluate
fixation algorithms. For instance, Komogortsev and colleagues pro-
posed a qualitative and quantitative scoring system for eye move-
ment classification algorithms [2010]. De Urabain and colleagues
[2014] also presented an efficient two-step semiautomatic method,
GraFIX, to assess and adjust Velocity Threshold Algorithms result,
which provides reliable and stable measures on eye tracking data.

MDBSCAN is designed to identify fixations in eye-tracking data,
combining advantages of classical fixation identification methods.
Further studies will explore the utility of this approach for analyzing
a variety of eye-tracking studies in practice.

Acknowledgements

Funding was provided by K01 MH104739, R21 MH102572, CTSA
UL1 RR024139, R03 MH092618, NIH R01 MH100182, R01
MH087554, U19 MH108206; NSF #1139078, #0835767, DOD
W81XWH-12-ARP-IDA, and the Nancy Taylor Foundation.

References

BLIGNAUT, P. 2009. Fixation identification: The optimum thresh-
old for a dispersion algorithm. Attention, Perception, & Psy-
chophysics 71, 4, 881–895.

DE URABAIN, I. R. S., JOHNSON, M. H., AND SMITH, T. J.
2014. Grafix: A semiautomatic approach for parsing low-and
high-quality eye-tracking data. Behavior research methods 47,
1, 53–72.

ESTER, M., KRIEGEL, H. P., SANDER, J., AND XU, X. 1996. A
density-based algorithm for discovering clusters in large spatial
databases with noise. Kdd 96, 34 (August), 226–231.

KOMOGORTSEV, O. V., GOBERT, D. V., JAYARATHNA, S., KOH,
D. H., AND GOWDA, S. M. 2010. Standardization of auto-
mated analyses of oculomotor fixation and saccadic behaviors.
Biomedical Engineering, IEEE Transactions 57, 11, 2634–2645.

KRAUZLIS, R., AND MILES, F. 1996. Initiation of saccades during
fixation or pursuit: evidence in humans for a single mechanism.
Journal of Neurophysiology 76, 6, 4175–4179.

LIVERSEDGE, S. P., AND FINDLAY, J. M. 2000. Saccadic eye
movements and cognition. Trends in cog. sciences 4, 1, 6 – 14.

SALVUCCI, D. D., AND GOLDBERG, J. H. 2000. Identifying
fixations and saccades in eye-tracking protocols. Proceedings of
the 2000 symposium on Eye tracking research and applications.
ACM. (November), 71–78.

SEN, T., AND MEGAW, T. 1984. The effects of task variables and
prolonged performance on saccadic eye movement parameters.
Advances in Psychology 22, 103–111.

SHIC, F., SCASSELLATI, B., AND CHAWARSKA, K. 2008. The
incomplete fixation measure. ETRA 2008. ACM., 111–114.

SUN, W., YANG, Z., LI, S., XU, Y., GUO, M., AND X, W. 2015.
Driver fixation area division oriented dbscan-mmc method. Jour-
nal of Zhejiang University (Engineering Science) (August).


