
An exploratory analysis targeting diagnostic 

classification of AAC app usage patterns 

Adham Atyabi1,2, Beibin Li1, Yeojin Amy Ahn1,2, 

Minah Kim1, Erin Barney1 

Frederick Shic1,2 

1. Seattle Children’s Innovation & Technology Lab (SCITL) 

Seattle Children's Research Institute  

Seattle, WA, USA 

 

2. Department of Pediatrics 

University of Washington 

Seattle, WA, USA 

{aatyabi, fshic}@uw.edu 

 
Abstract— 

Augmentative and Alternative Communication (AAC) apps 

are apps that enable non-speech communicative forms. One class 

of AAC apps are speech-generating devices (SGDs), where 

icons/pictures are tapped to produce spoken words.  These apps 

are widely used to support communication and language learning 

for individuals with disabilities such as autism spectrum disorder 

(ASD). Given that these apps are used in everyday scenarios, they 

can generate massive streams of data, providing a wealth of 

information regarding individual usage patterns and for 

developing usage model profiles. However, the utility and 

potential of these streams of data has been little explored from a 

data mining perspective. The objective of this study is to evaluate 

several feature representations of usage patterns, coupled with 

data mining and data modelling techniques, for identifying 

differences in AAC usage patterns between users with and 

without ASD. The study is conducted using data streams 

aggregated from an AAC app called FreeSpeech, specifically 

designed for individuals with learning disabilities and ASD. 

Several feature representations for modeling usage profiles based 

on temporal, behavioral and frequency of usage, are investigated. 

The potential of each usage representation is assessed using a 

collection of well-known and well-established learning methods 

such as support vector machine and ensemble learning. While, in 

general, prediction performance was only slightly above chance 

in most representations, results from unsupervised class labeling 

experiments showed promising results regarding the potential of 

stationary keypress usage representations with bootstrapped 

ensembles for separating ASD from non-ASD users. 

Keywords—Bagging, boosting, classification, ensembles, 

imbalanced data-sets, Augmentative and Alternative 

Communication, Autism Spectrum Disorder 

I. INTRODUCTION 

Augmentative and alternative communication (AAC) 
systems provide an alternative to speech for communication, 
allowingindividuals without verbal abilities toexpress thoughts, 
needs, and share ideas; they can also be used to foster the 
development of communication skills [3]. Rapid technological 
development has fueled growth of the AAC field [5], 
demonstrated by the wide use of speech-generating devices 
(SGDs), electronic communication boards, and AAC 
applications for mobile technologies. 

These highly technological communication systems have 
multiple benefits: They offer support for exchanging 
information, developing social relationships, and 
communicating needs [6], which are all critical aspects of 
effective social living. Unfortunately, these activities are 
hindered all too often in individuals with complex 
communication needs, including, but not limited to, those with 
motor speech disorders [13], with aphasia, and with autism 
spectrum disorder (ASD) [14]. High-tech, often portable, AAC 
systems can serve as powerful tools for individuals who are 
minimally verbal, helping them to meet their daily needs and 
participate fully in interactions with others. The potential 
benefits that AAC systems offer are also observed in 
interventions that implement AAC for individuals with 
complex communication needs and other developmental 
disabilities [14,15,16,17]. For instance,  AAC systems have 
demonstrated a great potential for fostering improvements in 
communication in children with ASD [7, 8, 18]. With 
technological advancements in portable electronic devices, 
AAC mobile apps further increase accessibility and availability 
to a more diverse population [11]. 

Many have speculated about the effect of technology on 
AAC, especially within the autism community [12,11,10,9], 
but there have been relatively few empirical studies. A review 
by Alzrayer, Banda, & Koul [6] found support for the 
effectiveness of an SGD app called Proloquo2Go, and iOS-
based SGDs in general. Other studies have compared physical 
AAC systems like the Picture Exchange Communication 
System (PECS) with a modern, tablet-based adaptation [19].  

The current study investigates data obtained from an in-
house made mobile application for AAC, called FreeSpeech. 
FreeSpeech is a commercially available AAC app with a 
flexible, user-programmable interface. FreeSpeech was 
developed to provide its users with more opportunities to 
communicate directly with others, thereby increasing quality of 
life. It is composed of a static and dynamic screen with a field 
of several icons which represent specific words. When an icon 
is pressed, the word is spoken aloud by the device. This type of 
speech generating device is particularly useful for individuals 
who are minimally verbal as it provides a means to 
communicate through spoken language. To increase user-
friendliness of the application, the users could reconfigure the 
app interface to accommodate their needs, skills, and 



preferences. They had options to create their own icons by 
uploading photos, images, words, and sentences. 

The present study evaluates various feature representation 
mechanisms to predict usage patterns of the FreeSpeech 
application between those with and without ASD. Released in 
January 2012 and terminated in May 2014, FreeSpeech 
collected data from 6033 users. Understanding the usage 
patterns and predicting the types of individuals who appear to 
benefit from using this app may provide insight into the 
improvement of AAC apps, allowing developers to better fit 
their technology to specific users. 

II. PROBLEM STATEMENT 

Although substantial effort and attention is diverted 
towards development of AAC applications to assist individuals 
with ASD, these apps are not designed with usage analytics in 
mind. Instead, the development of such applications mostly 
focuses on providing an accessible mechanism for individuals 
to have daily and routine trainings in order to improve their 
performances. Analysis of users’ performance is usually done 
as a self-assessment or is conducted by caregivers and medical 
professionals using psychological/physical/clinical measures. 
That is, the underlying design principles of these applications 
are not to collect valuable usage data for posthoc analysis. In 
fact, to the best of our knowledge, there is no existing study 
that utilizes patterns of AAC application usages to separate 
ASD from non-ASD individuals.   

As a result no clear guidelines exist for dealing with 
recorded application interactions (if any are recorded). Given 
that the data structure and the principles behind the design of 
these apps did not consider collection of a meaningful usage 
pattern that could be used for training some learning models, 
making sense out of such ill-designed data structures is a 
complex and nontrivial task. This study is focuses on exploring 
the existing data mining and machine learning data analysis 
procedures, identifying suitable mechanisms for data 
representation of such usage recordings, and assessing the 
existing potential of such procedures for prediction of users’ 
medical diagnoses. 

III. METHODOLOGY 

A. FreeSpeech 

FreeSpeech was an AAC iPad application employed to 
foster communication skills and help people with speech and 
language disorders to communicate with others. The non-
verbal communication was provided through the selection of a 
sequence of words/icons/buttons that shape meaningful 
phrases. Figure 1 depicts a screenshot of this app in action. 

 The application was released in January 2012 and 
terminated in May 2014, during which time  6033 individuals 
used the application. We assessed the data collected  by the app 
between January 2012 and January 2014, which included 5372 
individuals' data. Given that the app’s usage information was 
originally collected for developer’s debagging purposes (see 
figure 2 for a snapshot of the collected data stream) and the 
application was not meant to be employed as a diagnosis or 
treatment tool, little attention been given to the data structure 

and representation during the app development. This resulted 
in collection of less suitable data for data analysis purposes.  

 

Fig 1. An illustrative screenshot of FreeSpeech app 

 

 

Fig 2. An example of the data stream collected by the FreeSpeech app. 
 

 

Fig 3. The distribution of FreeSpeech app users based on their self-disclosed 
diagnosis 



 

The application recorded all key presses, on-screen events, 
and backend events in a run log. When the iPad was connected 
to internet, these run logs were automatically uploaded to a 
server. 214 users filled out a survey for the app, and 180 of 
them disclosed their disorders, as shown in the Figure 3. 
Among the 180 users, we labeled the 81 users diagnosed with 
ASD as the ASD group, and labelled the other 99 users as the 
non-ASD group for classification. 

TABLE I.  T-TEST SIGNIFICANT ANALYSIS OF FREESPEECH APP USAGE 

DATA 

 
Mean in Group 

P-Value 
ASD nonASD 

Length of Each Use (min) 2.14 2.10 0.86 

Number of Word Selects per 
Use 

5.6 4.31 0.083 

Frequency of Word Selects 

(#/min) 
2.99 2.28 0.049 

 

 

 

Fig 4. Data cleaning and preprocessing flowchar 

 

To better understand the associated complexities in 
analyzing the data collected with the app, t-test statistical 
analysis is performed. The results in Table I reports lack of 
strong statistical significant across ASD and nonASD groups in 
the data collected by the app. 

B. Preprocessing and usage data manipulation/preparation 

procedures 

Three mainstream methods of feature representations are 

considered in this study. These methods represent time 

intervals of key presses, frequency of pressing a given key, and 

pattern of key presses. The first category reflects the amount of 

time (in milliseconds) took for a participant to press a new key 

(t=t1-t0). The second category indicates how often a particular 

key was pressed during a session. This representation is 

extended to categorical key presses as well. That is, first all 

existing keys/events are distributed to certain prefixed 

categories and later, for each participant and each session, the 

frequency of a key from any given category being pressed was 

extracted to represent category/group frequency of key press 

for that participant on that particular session.  

Overall, 69 events/keys were identified by the app and 

these events/keys were grouped based on their representative 

complexity and event type to categories/groups of normal keys, 

complex keys, normal app events, and complex app events. In 

this study, a key press captures actions like  “selecting a word,” 

“speaking a sentence,” “editing mode,” etc., while app activity 

events include actions such as “app becoming active,”, 

“entering background,” “memory warning,” etc. 

The last mainstream feature representation considered in 
this study extracts patterns of usage from the raw data by 
identifying sequences of keys that were pressed during each 
session by each participant. In order to unify this 
representation, first all existing keys/events were distributed to 
certain prefixed categories and later, each key in a category 
was given a unique ID adjacent to other existing keys within 
that category. These IDs were utilized to capture the usage 
pattern of the participants. This procedure guaranteed that each 
key was represented with a unique value and provided the 
possibility of capturing categorical changes in key presses 
within the usage pattern.  

No spatial information was considered in this analysis since 
the participants could customize their app interface and shuffle 
the key locations based on their preferences. 

 One session of FreeSpeech use was defined by the 
activities occurring between events where the app became 
active and then inactive. A session could last from several 
hours long to few seconds and could contain any number of 
keypresses. To address the dynamic nature of the recorded 
sessions, non-overlapping sliding window technique is utilized 
to segment the session data to manageable, fixed-size samples. 
This issue is further described in the following sections. The 
overall procedures employed or data cleaning are presented in 
figure 4. 



To clarify the preprocessing procedure and provide a better 

realisation of the usage pattern representations considered in 

this study, the following example is provided:   

  

Assume a sample sequence of keypresses from the raw data 

(an example of one key press record in the logfile is below). 

The feature representations in this study convert the raw 

keypress information to following formats: 
• A single keypress from the logfile:  
"7623";NULL;NULL;NULL;NULL;"2012-02-

09_13:36:13";"word_selected";"coffee";NULL;"xxxxxx_userid_xxxxxx";"20
12-02-09 13:32:58";"2012-02-09 13:32:58";NULL;NULL;NULL 

• Representation based on keypress/event time intervals with 

a window size of 10 keypresses:  
User ID Session  ΔTime 1 ΔTime 2 ... ΔTime 9 ΔTime 

10 

00001 Date - Time 1 3 ... 7 2 

• Representation based on keypress/event frequency:  

User ID Session  Length of Session Key 1 ... Key 69 

00007 Date - Time 1250 seconds 3 ... 2 

• Representation based on groupwise keypress/event 

frequency:  

User 

ID 

Session  Length of Session Key/event 

group 

1 

... Key/event 

group 

4 

00007 Date - Time 1250 seconds 20 ... 55 

• Representation based on keypress/event with a window size 

of 10 keypresses:   

User ID Session  Key 1 Key 2 ... Key 9 Key 10 

00001 Date - Time 23 16 ... 34 52 

IV. EXPERIMENT DESIGN & RESULTS 

A. Experiment 1. Analysis of usage patterns via various 

feature representations 

To investigate the potential of gathered usage data, three 
different feature representations were considered for in-depth 
analysis. These representations include keypress time intervals, 
keypress frequency, and keypress patterns. only app usage 
information of participants with known diagnosis information 
(labeled samples) were considered in following experiments 
(experiments 1.1,1.2, 1.3, & 2) in order to eliminate the effect 
of noisy class labeling that might be caused through using the 
samples that were originally unlabeled. Experiments 1 and 2 
only use data from participants who disclosed their disabilities 
(180 individuals). However, a broader analysis is conducted in 
experiment 3 with keypress-based feature representation using 
the recorded data from all 5372 participants. 

 

Experiment 1.1 keypress temporal features 

The temporal usage representation consisted of time 
differences between subsequent keypresses. Given the 
differences in the number of keypresses across participants and 
their multiple sessions using the app, the resultant non-
stationary representation is fixated using subsamples of non-
overlapping sliding windows of size k keypresses. Each 
window contains temporal information of keypresses 
indicating the time differences between two subsequent 
keypresses.  Several window sizes are considered in order to 
identify the least distorting stationary representation of the 
underlying pattern (k= 10, 20, 30, 40, 50, and 100 keypresses). 
Given the imbalanced nature of the dataset caused by 
differences in the number of sessions each participant used the 
app, the length of each session, and the number of keys they 
pressed in each session, an especially designed Leave-One-Out 
(LOO) scheme is employed in this study. First, all the data 
recorded from a given participant is separated as test set and 
the remaining data is considered as training set. The remaining 
data is passed through 100 bootstraps in which all samples 
from the less-populated group (ASD or non-ASD) are reserved 
while an equal number of samples from the other category are 
drawn randomly from the pool of training samples. This 
procedure is used to provide pseudo-balancing between the two 
groups of ASD and non-ASD samples/participants. Two layers 
of majority voting are used to aggregate the results. That is, 
first, the decision on multiple subsamples of the same subject 
are unified (samples each representing a different 20 keypress 
window of the same session/participant), and later, the decision 
across the 100 bootstraps are consolidated. Support Vector 
Machine (SVM) with radial based kernel function (RSVM) is 
utilized for evaluation. Radial based kernel and SVM are 
chosen due to their better learning generalization capability in 
adhoc experiments with the data. The results of this analysis 
are presented in Figure 5. 

 

Fig 5. The averaged LOO classification accuracy of keypress time intervals 

with varying sizes of non-overlapping sliding windows 

 



The results in figure 5 indicate windows sizes of 40 and 
100 keypresses as the best and worst window-sizes for 
representing usage patterns based on temporal information. 
This is with the understanding that the differences in the 
overall classification accuracy across various window-sizes are 
in the order of 5-10%. The lower classification performances 
achieved by larger window sizes can be due to subsequent 
lower numbers of training samples, which can result in poor 
training of SVM. The overall classification performance 
reported in figure 5 suggests infeasibility of the time-based 
representation of participants’ usage patterns given that the 
results are only slightly above 50% (chance level). This is 
noteworthy given that a two-sample t-test analysis of the 
keypress time interval data across ASD and non-ASD groups 
revealed lack of any statistical significance with p > 0.05 
between the ASD and non-ASD groups with any of the 
window sizes utilized in this experiment. 

Experiment 1.2 keypress frequency features 

In this experiment, frequency of each key (or key-group) 
being pressed in a session by a given participant is used to 
represent the app usage. Like experiment 1.1, LOO with nested 
100 bootstrap is used for balancing the training sets between 
ASD and nonASD groups. Average (over 5 repetitions) 
classification accuracy of RSVM in the LOO scheme nested by 
100 bootstraps is employed as the assessment criteria. The 
results indicated lack of performance differences across the 
two types of frequency-based representations utilized in this 
experiment (e.g., frequency of a given key being pressed 
versus frequency of a given key-group being pressed). The 
average classification accuracy is barely above chance e.g., 
53.8%. 

Experiment 1.3 keypress features 

This experiment is designed to investigate various keypress 
fixed window size usage pattern representations. First, 
keypress features captured within non-overlapping window 
sizes of 10, 20, 30, 40, 50, and 100 are considered. This 
experiment is inspired from previous feature representation 
studies in which similar windowing and overlapping 
mechanisms are considered and shown that such 
methodologies are able to improve pattern discrimination 
performances with classifiers such as SVM [22-25]. Like 
previous experiments the combinations of RSVM and 5 
repetitions of an especially designed LOO scheme that is 
nested with 100 bootstraps are employed for evaluation. The 
results are presented in Figure 6. To better understand the 
feasibility of this feature representation and to reduce the 
chances of poor classification performance being achieved due 
to lack of having adequate number of training samples, 25%, 
50%, 75% and 90% overlapping windows are also evaluated 
(only on window size of 20 keypresses).  

The results in figure 6, representing non-overlapping 
samples with varying window sizes, are similar to what is 
reported with temporal usage representation in experiment 1.1, 
with the best overall classification performance being achieved 
by a window-size of 40 keypresses on non-overlapping 
keypress sequences. Like experiment 1.1, a window size of 100 
keypress sequences achieved the poorest classification 
performance.  

The subsequent multi-scaled keypress representation using 
a range of overlapping percentages showed a slight overall 
prediction improvement.  

Two-sample t-test analysis of the keypress pattern data 
across ASD and non-ASD groups revealed statistically 
significant differences across the usage patterns of these two 
groups of participants with p < 0.05 across all window sizes 
and all overlapping percentages (0%, 25%, 50%, 75%, 90%). 
The presence of statistical significance across the ASD and 
non-ASD groups with keypress features while the classification 
accuracy is only above the chance performance suggests that 
the overall keypress patterns share enough similarities across 
the two groups to make them difficult for the learners to 
distinguish between the two groups appropriately. The reported 
performance with overlapping windows indicates that having 
more training samples with keypress usage patterns is not the 
most effective factor for separating diagnostic categories. 

 

Fig 6. The averaged LOO classification accuracy of keypress features with 

varying sizes of sliding windows with overlapping ratios of 0% (non-
overlapping) to 90% 

 

B. Experiment 2. Sample multiplication and robust learners’ 

impact on overall diagnosis prediction 

To better understand the underlying factors in prediction of 
ASD and non-ASD classes from keypress usage patterns, 
Experiments 1.2 and 1.3 are replicated using more complex 
and stronger learners including variations of boosting and 
bagging ensembles (AdaboostM1, RobustBoost, LPBoost, 
TotalBoost, RusBoost, SubSpace, LogitBoost, GentleBoost 
and Bagging). In this collection of boosting and bagging 
ensembles, RobustBoost is considered to investigate possible 
effects that noisy class labels might have on overall prediction 
accuracy since the class labeling information is taken from 
participant self-reports that could be unreliable. LPBoost, 
Bagging and TotalBoost are considered due to their robustness 
with dealing with small training samples. The remaining 
boosting ensembles are utilized based on the potential they 



showed in previous studies [4]. A review of these methods and 
their detailed descriptions can be found in [20,21]. 

The results of classification performance using keypress 
frequency features are illustrated in Figure 7. The results 
indicate a clear classification improvement with the best 
performance being achieved by LogitBoost and keypress 
frequency. Keypress frequency performs slightly better 
compared with key group frequency.  LogitBoost performance 
with keypress frequency is closely followed by Bagging and 
GentleBoost methods. It is noteworthy that except for 
Rusboost, all other methods report above-chance prediction 
despite the ill-defined nature of our feature space in keypress 
frequency category. 

 

Fig 7. The averaged LOO classification accuracy of keypress frequency 

feature representation  with a collection of strong and well-known ensemble 
learners 

 

 

Fig 8. The averaged LOO classification accuracy of keypress feature 

representation using sliding window size of 20 keypresses with various 

overlapping rations ranging from 0% to 90%. A collection of strong and well-
known ensemble learners are used for assessment. 

 

The averaged LOO classification accuracy of keypress 
feature representation using a sliding window size of 20 
keypresses with various overlapping ratios ranging from 0% to 
90%. A collection of strong and well-known ensemble learners 
are used for assessment. 

The results in Figure 8 highlight the impact of using strong 
learning in overall classification accuracy with the best overall 
performance being achieved by RusBoost and 25% 
overlapping keypress windows of size 20 keys. 

 

C. Experiment 3 Autism diagnosis from non-stationary app 

usage patterns 

This experiment is aimed at evaluating the predictive value 
of main feature representation of usage patterns. As mentioned 
earlier, a substantial number of the aggregated usage patterns 
lack diagnostic classes (only 180 participants out of 5372 
disclosed their conditions) which makes this evaluation more 
complicated. To address this issue, the following mechanism is 
considered to predict the diagnostic classes from users’ 
keypresses.  

First, key press informations is cataloged and each key is 
given a unique value based on the overall category to which it 
belongs (see preprocessing section). Given the differences in 
the number of keys pressed by each user in each session, a non-
overlapping sliding window of 20 keypresses is utilized and all 
shorter window data entries are ignored.  

Self Organizing Map (SOM) and K-means clustering 
algorithms are utilized to relabel the samples. The class 
relabeling process is accomplished using:  

• the 1st 20 keypresses of the first session of each participant 
resulting in a dataset with a single sample (20 keypress) 
per participant  

• all 20 keypress windows from all sessions resulting in a 
dataset with more than one sample per participant (unless 
the participant only used the app once and only pressed 20 
to 39 keys).  

The results are presented in Table II. In this procedure, the 
outcome of the clustering methods are assessed based on the 
percentage of samples from known diagnosis group (e.g., usage 
data of 180 participants) of ASD and non-ASD groups that 
disagree with the cluster-labeling decisions of the majority. 
The results (averaged across 100 and 10 repetitions in Kmeans 
and SOM respectively) indicate a better overall performance 
with lower error rates when all of the sliding windows of 20 
keypresses are used for the assessment. The high percentage of 
error rates reported by the non-ASD group can be attributed to 
the fact that this group includes a collection of individuals with 
varying learning/language disabilities in addition to typically 
developing users. 

 

 

 

 



TABLE II.  THE RESULTS OF DIAGNOSIS PREDICTION ON SAMPLES WITH 

KNOWN DIAGNOSIS USING CLUSTERING AND REGRESSION METHODS 

 
ASD  Error Rate    non-ASD 

Error Rate 

Class label prediction using all 20 keypress samples of each participant 

SOM 21.8129% 53.3854% 

K-Means 21.8245% 53.3854% 

Class label prediction using only the 1st 20 keypresses of the first session in 

each participant 

SOM 39.1304% 58.9744% 

K-Means 39.1304% 58.9744% 

 

he overall suitability of the best relabeled set (labels 
identified by k-means clustering method using all subsamples 
of 20 keypresses) is evaluated using an specially designed 
Leave-One-Out (LOO) scheme that contains 100 bootstraps of 
the training set for pseudo-label-balancing. This procedure is 
eliminates any effect that might be caused by the imbalanced 
nature of our dataset. The nested-LOO scheme is designed in a 
way to eliminate any chance of subsequent samples of the 
same participant being presented in both training and testing 
simultaneously.  It should be noted that although the current 
dataset is imbalanced in principle, the added bootstrap 
component in the LOO scheme generated a set of pseudo-
balanced training sets in which all of the samples from the 
smallest class population are reserved and an equivalent 
number of samples from the other class are randomly chosen 
from the existing pool. The 100 repetitions of the bootstrap is 
used to eliminate the chance of randomly choosing a well-
tuned or badly-tuned training set which can result in 
exceptionally high or poor classification performances. It is 
noteworthy that the utilized LOO scheme contains two layers 
of majority voting in which, first a majority voting is applied 
over the predictions of multiple sliding windows originating 
from the same participant’s app usage information, and later a 
secondary majority voting is conducted to unify the decision 
across the 100 bootstraps that each has a different training 
sample combination.  

The classification performance achieved using the logistic 
regression method showed 70% accuracy in medical diagnosis 
prediction. This is noteworthy since evaluations with pre-
known diagnosis samples (app usage information from 180 
individuals out of 5372 participants) under similar evaluation 
schemes with much stronger learners (SVM and variations of 
bagging and boosting) reported near chance levels of 
classification accuracy. While this result may be due in part to 
smoothing out of diagnostic variability due to our label 
assignment technique, it also highlights the potential feasibility 
of using patterns of key presses to predict diagnosis when 
enough training samples are utilized even with weak learners 
such as logistic regression. 

 

V. CONCLUSION 

This study was focused on the implications of various feature 

representation approaches for capturing the differences in 

usage patterns of a group of typically developing individuals 

and others who suffer from autism spectrum disorder, language 

impairment, and learning disability. Using several machine 

learning and data mining methods, the aim was to predict the 

self-disclosed diagnosis (ASD vs non-ASD) through an 

individual’s keypress patterns in their use of an AAC app. The 

study took advantage of the recorded data from an AAC app 

called FreeSpeech and investigated three mainstreams of 

feature representation based on the patterns of keypresses. 

These feature representations captured aspects of app usage 

such as i) the time intervals between consecutive keypresses, 

ii) frequency that a key or the group that the key belonged to 

was pressed, and iii) which combinations of keys were pressed. 

Given the differences in the usage patterns across multiple 

sessions and participants, sliding window representation was 

considered in the study. The study investigated various window 

sizes with varying degrees of overlapping percentages and the 

results suggested that using keypress patterns represented 

either as frequency or sliding windows of 20 keypresses with 

25% overlapping used in combination with strong learning 

methods such as RusBoost is able to provide adequate 

predictions.  

 To better understand the limits of the feature 

representations discussed in this study, additional recorded data 

without a self-disclosed diagnosis is utilized. First, using k-

means clustering approach, the unlabeled dataset is labeled to 

two groups of ASD and non-ASD and later, using 

combinations of i) leave one out nested with 100 bootstraps 

and two layers of majority voting and ii) a logistic regression 

algorithm, a diagnosis is predicted based on the keypress 

patterns. The achieved 70% classification accuracy indicated 

the potential of such a feature representation mechanism even 

with weak learning algorithms such as logistic regression in 

addition to highlighting the importance of utilizing an adequate 

number of training samples especially when such ill-captured 

and ill-designed app usage data is being used. 

Similar data representation and data mining 

methodologies could be used to characterize other complex 

interactions using technology, e.g. interactions with robots 

[26]. These methods can also be utilized for characterizing 

other HCI applications such as those with video games [27] 

and to characterize the usage of other apps for children with 

autism operating at various time scales, from apps designed to 

teach skills to special populations in intensive sessions [28,29] 

or with those used to promote positive habits of behavior [30]. 
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