
  

 

Abstract— In their expanding role as tutors, home and 

healthcare assistants, robots must effectively interact with 

individuals of varying ability and temperament. Indeed, 

deploying robots in long-term social engagements will almost 

certainly require robots to reliably detect and adapt to changes 

in the demeanor of social partners to promote trust and more 

productive collaboration.  However, the recognition of emotional 

state typically relies on the interpretation of very subtle cues, 

often varying from one person to the next.  In addition, while 

facial expressions, body posture and features of speech have 

been used to detect affective changes, the robustness of these 

measures is often hindered by cultural and age differences.  

Recently, infrared thermography has shown promise in 

detecting guilt, fear and stress, indicating that it may be a viable 

sensing modality for improved human-robot interaction.  In this 

study, we evaluated the efficacy of using a far infrared (FIR) 

camera for detecting robot-elicited affective response compared 

to video-elicited affective response by tracking thermal changes 

in five areas of the face.  Further, we analyzed localized changes 

in the face to assess whether thermal and electrodermal 

responses to emotions elicited by video and by robots are similar.  

Finally, we performed principal component analysis to reduce 

the dimensionality of the data set and evaluated the performance 

using machine learning techniques for classifying thermal data 

by emotion state, resulting in a thermal classifier with a 

performance accuracy of 77.5%. 

I. INTRODUCTION 

Collecting physiological information remotely creates 
opportunities for promoting long-term, productive, and safer 
interactive work between humans and the systems with which 
they interact.  However, while FIR sensing provides copious 
amounts of physiological information, it is a sensing modality 
that is still poorly characterized for human-robot interaction.   

The recent profusion of robots working in close proximity 
to humans motivates the development of robots capable of 
detecting less overt signs of changing emotional state in their 
human counterparts.  For robots employed in educational and 
therapeutic settings, thermal feedback indicating increased 
stress level and frustration would enable robots to adjust their 
interactions to challenge students and patients optimally 
without exceeding their ability.   

Further, thermal sensing may offer assistance to 
developmentally disabled populations and other individuals 
who have a limited ability to communicate and those who may 
be averse to wearing biofeedback sensors.  By detecting the 
innate emotional and stress state of the individual without the 
requirement of self-awareness or speech, thermal sensing may 
be a valuable tool for improving our understanding of the 
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affective impact of robot interactions on populations with a 
limited ability to self-describe or express emotional state. 

Thermographic sensing has mostly recently been used to 
identify distinct thermal patterns for performing face 
recognition, facial expression detection and the estimation of 
individual affect [1, 2].  Studies have even demonstrated that 
fear can be distinguishable from a happy affective state and 
that guilt manifests in a thermographically unique way from a 
neutral baseline state in children [7]. 

Infrared thermography offers many advantages over other 

modalities of emotion detection.  First, because thermal 

cameras capture data outside the visible light spectrum, the 

information they deliver is less prone to changes in 

illumination, shadows and partial occlusions.  Further, 

thermographic changes associated with physiological 

response do not rely on facial expression, body posture or 

features of speech so it remains impartial to variances in age, 

culture or language.  Moreover, because thermography is 

collected remotely, it may be integrated into a wide range of 

human-robot interaction settings and applications.  This work 

evaluates both the elicitation of emotion with a robot as well 

as a classifier for discriminating between two emotion states. 

II. RELATED WORK 

A. Applications in robotics. 

Thermal imaging has been employed in a number of 

applications to detect affective change in individuals exposed 

to emotional stimuli [14].  However, while studies exist which 

include contact-based sensors for affect detection in human-

robot collaboration, there is a paucity of published work in 

which noncontact sensing is employed for this purpose.  This 

study specifically explores the efficacy of eliciting emotion 

with a robot and delivers a trained 2-state thermal classifier 

for those emotions. 

B.  Classifying emotion states. 

Research in infrared thermography has accelerated in the 
last decade, revealing the significant potential of this sensing 
modality for greatly improved sensing and enhanced robot 
adaptivity in human-robot interactions.  For instance, anxiety 
caused by lying has been demonstrated to increase the surface 
temperature of the periorbital area of the face and the tip of the 
nose [1], while increased mental workload has been correlated 
with nose tip temperature decreases [8].  Fear in adults has 
been associated with rapid decreases in cheek temperature and 
an increased temperature in the periorbital region, while 
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infants experiencing the stress caused by maternal separation, 
typically present a decreased overall forehead temperature [3, 
4].  Children who feel guilt after breaking an experimenter’s 
“favorite” toy, exhibit a significant temperature decrease in the 
tip of their nose [7].  These examples not only illustrate the 
significance of skin surface temperature for assessing the 
psychological states, but also serve to reveal the inherent value 
of using these fundamental physiological cues to inform and 
improve robots employed to assist individuals in their day-to-
day lives. 

C.   Other physiological measures of emotion. 

Physiological signs associated with emotional response 
include increases or decreases in heart rate, changes in skin 
tone from blushing or turning pale and perspiration [5].  
Biofeedback sensing and RGB video-based techniques have 
been applied to detect changes in these autonomic nervous 
system responses and to track affective response.  Research 
has also explored collecting data from wearable electrodermal 
sensors as part of a multimodal approach to detect emotional 
or psychological stress [4, 6, 10].  However, few studies 
explore the elicitation of anger with a robot and fewer describe 
a thermal classifier for use in human-robot interaction. 

III. METHODOLOGY 

In this study, we developed two interactive sessions with a 

robot and selected three sets of video clips to elicit affective 

response to anger and happiness.  We collected physiological 

measures from each participant including thermal information 

from five regions of the face and electrodermal activity 

(EDA).  Additionally, a Likert scale was administered after 

each robot session and after each set of video clips to record 

individual feedback pertaining to emotional response.  We 

were interested in comparing differences in thermal affective 

response elicited with well-studied stimuli such as videos to 

those elicited via human-robot interaction.  Further, we 

evaluated the performance of classifiers to further describe 

features contributing most significantly to each emotion.   

Each study session was divided into four individual phases.  

The first two phases engaged participants with two versions 

of an interactive robot.  In phase 1, participants engaged in a 

pleasant interaction with a complimentary robot while the 

second phase was designed to be frustrating and anger-

inducing.  The last three phases consisted of a set of clips 

acting as a “break” between the robot condition and video 

condition and two sets of video clips designed to elicit 

happiness and anger, respectively. 

A.  Participants. 

Ten healthy adult participants participated in the study 

which included two interactive sessions with a robot and three 

video sessions, lasting a total of approximately 30 minutes.   

Participants were asked to sign a study consent form and 

video release form and to wear an EDA sensor on their wrist 

before beginning the study. 

B. Thermal camera.  

The InfrREC R300SR-S high resolution infrared video 

camera with a thermal sensitivity (NETD) of 0.025°C was 

employed to collected temperatures.  The camera 

simultaneously captured RGB and thermal video at 

approximately 60 frames per second and streamed data in 

real-time to a computer attached via USB.  All collected 

thermal data was processed and stored on an encrypted laptop. 

C.   Robot condition. 
 

The robot used in this study was a modified version of 

MyKeepon with programmable servos controlled by an 

Arduino board [12]. MyKeepon has a minimalistic design that 

resembles a small, yellow snowman. Four degrees of freedom 

allow the robot to pan to the sides, tilt forward and backward, 

bop up and down and roll to the sides. Several nonverbal 

behaviors such as idling, happy, surprise and confusion were 

combined with Text-To-Speech (TTS) utterances using the 

Thalamus framework [11] to animate the robot. The interface 

implemented for this study was tele-operated to control 

MyKeepon’s higher-level actions, such as greeting the user or 

asking the next trivia question. 
 

D.    Video condition. 
 

Two video sets were selected to elicit happiness and anger 

based on criteria defined in [13].  The first set included two 

movie clips to elicit happiness and included scenes from “Elf” 

and “Emperor’s New Groove”.  The second set of film clips 

elicited anger and included scenes from “Enough” and “12 

Years a Slave”.  Each video clip lasted approximately 2.5 

minutes, for a total of 5 minutes for each video set. 
 

E.  EDA. 

The Empatica E3 electrodermal activity (EDA) sensor was 

used to collect EDA during each session.  The sensor was 

placed on the dominant hand of each participant 

approximately 5 minutes before entering the experiment room 

and data was collected throughout the entire study session and 

monitored via Bluetooth connection on a nearby smartphone. 

F.  Likert scale. 
 

Self-reports were collected with a 6-point Likert scale, 

representing the intensity of emotion experienced (0-5) for a 

range of 6 possible emotions including: happiness, surprise, 

sadness, frustration, anger and disgust.  To avoid bias, the 

identical scale and range of emotions was included in every 

survey after each phase of each study session. 
 

G.   Experiment room. 
 

The study was conducted in a small experiment room at the 

Yale Child Study Center.  One chair and a small table were 

positioned in the middle of the experiment room.  The robot 

was placed on the small table and a set of speakers, used to 

output the robot’s sounds, were positioned behind a small 

wall in the room.  Additionally, a computer monitor and a 

thermal camera mounted on a tripod, were placed opposite the 

table and chair.  The room was divided by a heavy black 

curtain behind which two experimenters remained for the 

duration of each session to monitor the thermal camera and 

tele-operate the robot, as needed. 

H.   Protocol 

Upon entering the experiment room, each participant was  



  

 

 

asked to sit in a chair located in front of the small table.  The 

study facilitator explained that the participant was invited to 

engage in a 30-40 minute session featuring two trivia games 

with the robot and three sets of video clips.  It was explained 

that the robot would deliver a trivia question, present four 

possible answers (each denoted as answer “A” through “D”) 

and the participant would be asked to speak their letter answer 

to the robot.  The robot would then repeat the participant’s 

answer and respond as to whether the given answer was 

correct or incorrect.  Participants were informed that several 

features related to the robot’s performance were being tested.  

Additionally, the study facilitator explained that a tablet-

based questionnaire would be provided at the end of each 

phase to capture their personal evaluation about each phase. 

PHASE I: Robot/Happy.  In phase I the robot introduced 

itself and described the rules of the trivia game.  Trivia 

questions in this first phase were designed to be relatively 

easy, with the correct answer being (mostly) evident to 

participants.  With each correct response, the robot delivered 

positive feedback such as, “Great job!”, “You are really 

smart!” or “You have the highest score!”  If an incorrect 

response was given, the robot gave the participant the 

opportunity to keep trying new answers until the correct 

answer was received.  A total of 10 trivia questions were 

presented in Phase I, for a total duration of approximately 5 

minutes.  Upon completion of Phase I, participants were asked 

to complete a Likert scale questionnaire to collect emotional 

feedback pertaining to this phase. 

PHASE II: Robot/Angry.  Phase II began with the robot 

delivering positive feedback about the participant’s 

performance in the previous phase and a brief introduction for 

the Phase II set of trivia questions.  In this phase, the robot 

delivered trivia questions of greater difficulty.  In this phase, 

however, the robot intentionally selected an incorrect answer 

for seven out of the 10 questions presented and repeated that 

answer (as if the participant had actually selected it) before 

informing the participant that they had answered incorrectly.  

Phase II was approximately 5 minutes in length and consisted 

of a total of 10 trivia questions.  At the end of this phase, 

participants were again asked to complete a Likert scale 

questionnaire describing their emotional evaluation of the 

Phase II interaction. 

PHASES III-IV: Video/Happy, Video/Angry.  Phases III-IV 

featured film clips that were selected to elicit happiness and 

anger, respectively.  At the completion of each set of videos, 

participants were also asked to complete a Likert scale to 

report their evaluation of each video stimuli.  Additionally, 

before the beginning of video sets 1 and 2 a neutral video, 

featuring slow moving geometric shapes and soothing music, 

was played for 30 seconds. 

IV. DATA COLLECTION 

A. Thermal video. 

A thermal camera was positioned approximately 4-5 feet from 

the participant so that the field of view was centered and the 

participant’s entire face was captured throughout all four of 

the study phases.  During each study session, thermal and 

RGB video were simultaneously streamed in real time to a 

nearby computer.  In the event that a participant changed their 

position so much that their face was no longer in the camera’s 

field of view, the participant was either asked to readjust their 

position, or the camera position was adjusted. 

B. EDA. 

EDA was collected from each participant beginning several 

minutes before entering the experiment room and throughout 

the duration of the entire study session.  EDA signals were 

deemed to be viable when the minimum skin conductance 

level (SCL) equaled or exceeded 0.4 microsiemens (µS) and 

displayed a variance of at least 0.2 µS throughout the course 

of the study session. 

C. Likert scale. 

The Likert scale was electronically administered via tablet, 

in order to provide the opportunity for each participant to 

easily self-report their emotional evaluation of each study 

phase. 

V. DATA ANALYSIS 

Data from thermal video, EDA, heart rate and Likert scales 

were collected along with the time-stamps for stimuli 

delivered during both robot and video conditions.  We 

evaluated Likert self-reports from both conditions to evaluate 

the efficacy of emotion-elicitation via robot interaction 

compared to emotion-elicitation using a set of video clips.  

Further, we examined the thermal trends of five regions of 

interest (ROIs) (Figure 1) and EDA within each study phase 

to examine association to detect each emotion, in each 

condition.  Finally, we reduced the dimensionality of the data 

set and trained and tested a thermal classifier with the most 

significant principal components representative of the data set 

collected.  In order to conduct comprehensive analyses, data 

sets were each sampled, cleaned and time-synchronized. 

We were interested in directly comparing robot-elicited and 

video-elicited thermal responses.  Because we did not develop 

a sadness-eliciting interaction with the robot, we did not 

include analyses of video responses to sad stimuli here. 

A. Preparing the data. 

First, all ROIs including the forehead, periorbital region, tip 

Forehead 

Figure 1.  Facial regions of interest (ROIs) 
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of the nose, cheeks and mouth, were hand annotated from the 

thermal video at 10-second intervals for the entire session 

duration and for each participant.  Ten frames of thermal data 

were extracted at each ten-second interval for subsequent 

analysis.  Next, we time-aligned extracted thermal readings, 

EDA, heart rate and Likert reports using recorded system time 

stamps in order to perform analyses across all data sets.  

Finally, due to variability in resting skin surface temperatures 

between participants and to more precisely measure 

physiological affect directly resulting from each stimulus, the 

within-phase mean and slope were computed for recorded 

ROI temperatures and EDA during each of the four study 

phases. 

B. Objectives. 

Two data sets (thermal and EDA) from two conditions 

(robot and video) were analyzed using Pearson’s bivariate 

correlations, ANOVA linear models, principal component 

analysis (PCA), logistic regression and a support vector 

machine (SVM) to further our understanding of four primary 

research aims: 
 

1. Assess the extent to which it is possible to elicit 

happiness and anger with robot interactions as it is 

with video stimuli  

2. Evaluate if anger and happiness, when elicited by 

both video and robot interactions, result in thermally 

similar changes. 

3. Explore the relationship between thermal data and 

EDA. 

4. Perform principal component analysis to reduce 

dimensionality of data.  Conduct logistic regression 

and train a classifier, effectively distinguishing facial 

thermal changes corresponding to happy and angry 

emotion states. 

1. Eliciting anger and happiness using video stimuli and 

human-robot interactions. 

Scores from self-reports collected after each study phase 

were assessed to evaluate the congruence between reported 

and elicited emotions.  If a participant reported anger as the 

highest score compared to other emotions during an angry 

phase, even if another emotion was tied for the highest score, 

that elicitation was considered effective.  Otherwise, the 

emotion elicitation was not considered successful.  

Correlations between emotion reports and each corresponding 

study phase were computed and the percentage of self-reports 

consistent with the emotion being elicited were derived. 

2. Eliciting anger and happiness, via video and robot 

interactions, to assess thermally similarity. 

Physiological time-series are often non-stationary in the 

sense that the system state changes in time such that taking 

averages will tend to destroy features that we are interested in 

preserving [9].  Since we were particularly interested in 

preserving and analyzing within-slope thermal changes 

resulting from within-phase stimuli, slopes were calculated 

for each ROI and for each participant to characterize thermal 

trends occurring during each condition.  

3. Connection between thermal data and EDA. 

We also evaluated the connection between collected thermal 

response and EDA within the robot condition, the video 

condition and the combined set.   EDA slope was computed 

to examine changes occurring during happy and angry phases, 

to compare to within-phase changes observed in the thermal 

data, and to evaluate disparities between conditions for 

similar emotion states.  Finally, we performed a correlation 

analysis of thermal and EDA features to further explore the 

relatedness between the two physiological measures. 

4. Principal component analysis, logistic regression, 

classifier training. 

Principal component analysis (PCA) was performed to 

reduce the variable set and to identify the most significant 

components contributing to the variability of collected 

thermal.  PCA was first conducted with thermal data and 

separately, with EDA data to derive individual components 

for each dataset.  Next, Pearson’s bivariate correlations were 

computed to evaluate the correlation between thermal and 

EDA features and binary logistic regression was performed to 

model the conditional probabilities of collected thermal data 

predictive of two emotion states.   

Finally, a support vector machine (SVM) was trained using 

leave-one-out training, where “one” corresponds to an entire 

participant set (two robot conditions and two video 

conditions).  Selecting the appropriate kernel type, along with 

feature selection, is known to significantly impact 

classification accuracy in emotional classification of 

physiological signals and there is evidence that a linear kernel 

may achieve the best performance for classifying emotion 

from nonstationary signals [8].  Our analyses included an 

examination of linear, radial and polynomial kernels to 

achieve optimal performance with the thermal data collected. 

Figure 2.  Thermal slopes (top) and EDA slopes (bottom) for 

each of the four study conditions.  Columns of thermal features 

(top) forehead, periorbital area, nose, cheeks and mouth. 



  

VI. RESULTS 

A. Eliciting anger and happiness using video stimuli and 

human-robot interactions. 

As expected, self-reported happy and angry emotions were 

shown to be highly associated with the corresponding 

emotion phase (r=0.860).  Accordingly, approximately 

93.0% of participants’ responses indicated that the intended 

emotion was most significantly elicited emotion during the 

corresponding study phase. 

B. Evaluate if anger and happiness, when elicited by 

video and robot interactions, result in thermally similar 

changes 

Analysis of thermal data yielded several findings.  Facial 

temperatures collected from participants during the robot 

condition and the video condition resulted in similar trends 

for corresponding emotion phases.  In both happy phases, 

declining or flattening of slopes was observed while 

increasing slopes characterized angry phases (Figure 2).  

Thermal responses recorded for each of the five ROIs were 

quite similar between conditions as well, with nose 

temperatures accounting for the greatest thermal shift 

between angry and happy phases.  Other ROIs revealed 

changes of similar magnitude and direction during the 

elicitation of angry and happy emotions. 

These observations are further supported by univariate two-

way ANOVA analyses with a Tukey control for multiple 

comparisons, in which we examined the interaction effects of 

condition (robot/video) and emotion (happy/angry) on 

individual facial ROIs.  Results indicated that although there 

were no interaction effects for most of the ROI slopes, there 

was a strong, statistically significant effect between within-

phase nose temperature changes, condition and emotion 

(F(3,36)=3.523, p=0.025). 

C. Connection between IR and EDA. 

Declining nose tip temperatures seemed to be related to 

declining EDA during happy phases as well.  Consistent with 

the connection between lowered nose temperatures in both 

happy robot and happy video conditions, 75% of the dataset 

also revealed a decrease in EDA during happy phases, 

irrespective of condition.  However, mean EDA slopes 

recorded during both robot phases were considerably less 

pronounced than those collected during the video phases 

(Figure 2) and no significant correlation resulted between 

thermal changes in emotion phases and EDA. 

While contrary to our expectations, the lack of connection 

between EDA and thermal slopes may suggest an underlying 

difference between physiological responses recorded with 

EDA sensing and our thermographic camera.  For example, a 

relatively delayed onset and slower recovery from thermal 

events may have contributed to within-phase differences 

between data sets.  However, given that self-reports collected 

from the Likert scales are consistent with the emotion phase, 

thermal slopes increase and recover as expected across 

emotion phases and there is no significant correlation of EDA 

to emotion phases in this study, further investigation of EDA 

using additional signal processing techniques may be required 

to uncover the possible connection. 

D. Principal component analysis, logistic regression, 

classifier training. 

Principal component analysis (PCA).  Five thermal 

features, including slopes for each of the five ROIs, were used 

to compute PCA (Figure 3).  Results show that more than 90% 

of the variance was explained by the first three components, 

with 80.7% of that variance explained by the first two 

components.  A summary of PCA findings is included below. 

Component Loading.  A Pearson’s bivariate analysis was 

performed to further describe the connection between 

individual ROIs and each principal component (Table 1).  All 

five ROIs loaded positively onto principal component 1 

(PC1).  Conversely, only two features loaded significantly 

onto principal component 2 (PC2), with the forehead 

negatively correlated and the nose positively correlated.  

Finally, three distinct ROIs loaded onto component 3 (PC3), 

including the periorbital region, cheeks and mouth. 

Logistic regression and Support Vector Machine (SVM).  
Next, a logistic regression was computed to explore the 

collective value of thermal data, as informed by PCA, for 

predicting membership in emotion phases.  To more 

specifically examine the interaction effects of condition and 

emotion state, individual dependent variables were tested.  

Results from logistic regression analyses are described.  

Thermal slopes from the robot-only phases clearly 

distinguished between happy and angry phases (chi square = 

27.726, p < 0.001 with df = 5) and a prediction success of 

100%.  Thermal data was not as predictive of emotion state 

when solely evaluating the video condition (chi square = 

2.353, p=0.798 with df = 5), resulting in a prediction success 

of slightly above chance at 60%.  When the two ROI slopes 

most significantly correlated with PCA1 and PCA2 in both 

conditions were applied, emotions were more reliably 

predicted (chi square 7.302, p=0.029 with df=2) with a 

performance accuracy of 77.5%.  

Finally, we employed results observed from logistic 

regression and PCA to train an SVM selecting the ROIs found 

to most significantly discriminate between condition and 

emotion phase.  Subsets of thermal data loading across PCA1, 

PCA2 and PCA3 were evaluated using leave-one-out training 

with the best performance resulting from forehead, nose and  

Figure 3. First three components for each feature, PCA. 

 



  

 

 

 cheeks slopes training, and an accuracy of 77.5%. 
 

E. Study limitations. 

The expectation that video-elicited thermal responses would 

be more pronounced than robot-elicited responses (and would 

take longer to recover thermally) led to the current study 

design in which robot condition was always presented first 

and the video condition, second.  However, it is possible that 

emotion responses and corresponding thermal responses 

resulted in a cumulative interaction effect.  A follow up study 

will counterbalance stimuli across condition and emotion. 

VII. CONCLUSIONS 

In this study, we developed two emotion-eliciting robot 

interactions and two sets of emotion-eliciting videos to 

explore thermal features contributing to the prediction of 

emotion state and to ultimately train a classifier for use in 

human-robot applications.  First, we evaluated the efficacy of 

eliciting happiness and anger with robot interactions and 

video sets developed for this study using Likert-based self-

reports.  Ratings extracted from self-reports indicated that the 

participants’ subjective appraisal of emotional stimuli for the 

corresponding emotion phase were consistent.  

We further examined temperature changes in each facial 

ROI to compare thermal patterns occurring during human-

robot interactions with those occurring during the observation 

of video clips.  Univariate analyses revealed a strong, 

interaction effect between within-phase nose slopes, 

robot/video condition and emotion.  Next, we explored the 

relationship between electrodermal activity (EDA) and 

thermal affective changes during the elicitation of anger and 

happiness in two robot and two video conditions.  Although a 

significant connection did not result from analyses performed 

with EDA and thermal data in this study, future work may 

explore the use of additional signal processing techniques to 

yield additional insights describing their connection.  Finally, 

we used PCA to identify which thermal ROIs were most 

predictive of condition and emotion state and guided the 

training of an SVM classifier using those features.  

Ultimately, an SVM 2-state emotion classifier, with a 

performance of 77.5% was achieved.   

 With an increasing research interest in exploring infrared 

thermography as a potential sensing modality for human-

robot applications, investigating robust approaches for 

detecting changes in emotion state - especially during the 

course of human-robot interactions - is essential.  This study 

delivers a comprehensive examination of the elicitation of 

two emotions during interactions with a robot and a 

methodological analysis describing thermal features 

contributing most significantly to each emotion. 

Future work will more carefully explore the underlying cause 

for differences between thermal and EDA data collected 

during robot-induced and video-elicited emotional response 

to identify possible interaction effects.  Additionally, a 

modified study protocol will be developed to counterbalance 

condition and emotion to mitigate the potential confound of 

cumulative thermal responses over time. 
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ROI/Component PC1 PC2 PC3 

Forehead 0.832** -0.474** 0.147 

Periorbital 0.837** 0.013 0.496** 

Nose 0.792** 0.574** 0.059 

Cheeks 0.847** -0.117 -0.342* 

Mouth 0.854** 0.032 -0.346* 

Table 1.  ROI loading on principal components. **denotes p<0.01 


