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Many machine learning (ML) models are trained on specific datasets for specific tasks. While

traditional transfer learning can adapt to new datasets when labeled data are adequate,

adapting to small datasets is still a challenging task. Researchers have applied multi-task

learning, meta-learning, weakly-supervised learning, self-supervision, generative adversarial

training, and active learning for various data adaptation applications. However, a unified

data adaptation framework has yet to be developed. This study proposes a unified framework

that can adapt to small datasets in a dynamic environment. Our framework, with a versatile

encoder and various decoders, can simultaneously learn from source datasets and estimate

confidence for novel data samples. We apply the framework to real-world medical imaging,

affective computing, eye-tracking analysis, and database management applications.
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GLOSSARY

NEURAL NETWORK: an artificial neural network with artificial neurons or nodes.

ADAPTATION: of a machine learning model aims to use a pre-trained model for a target
dataset, target task, or target domain. For instance, probing, fine-tuning, re-training,
and prompt-tuning are common adaptation methods.

DATA SHIFT: occurs when there is a change in the data distribution.

DOMAIN SHIFT: occurs when the data domains changes, e.g., from wildlife images to
histopathological images.

LOW-RESOURCE: occurs when the amount of training data or training labels is scarce.

SUPERVISED LEARNING: a machine learning task of learning a function that maps an
input to an output based on example input-output pairs.

UNSUPERVISED LEARNING: a machine learning task of learning patterns from unlabeled
data.

SELF-SUPERVISED LEARNING: a special mixture of supervised and unsupervised learning,
where the data provides the supervision. It is a machine learning task that combines a
small amount of labeled data with a large amount of unlabeled data during learning.

SELF-ADAPTATION: a machine learning model that can automatically adapt to distribu-
tion changes through self-supervised learning.

ix
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Chapter 1

INTRODUCTION

Inspired by human brains and neuroscience, neural network-based machine learning (ML)

models can tackle many challenging real-world problems, including machine translation, med-

ical imaging analyses, screening for developmental risk, and database optimization. However,

many neural networks are dataset-specific and struggle to generalize to novel data. More-

over, researchers often have limited resources for acquiring labeled data in medical diagnosis,

signal processing, and other machine learning applications. This study proposes a unified

framework to address the common low-resource learning and data shift problems when only

limited data or labels are available.

1.1 Challenge: Data Scarcity

Deep learning models show a potential to outperform human beings in many tasks, but

training a deep neural network requires abundant data. Pedro Domingos, a machine learning

expert, once argued that “the closest thing there is to a free lunch in ML is more data” [1];

Sambasivan et al. [2] from Google also complained, “everyone wants to do the model work,

not the data work.” While we agree that adding more data is usually more effective than

designing a better ML model, the reality of data acquisition can be cruel. Unfortunately,

capturing enough labeled data for deep neural networks is unrealistic in some applications

because of privacy concerns or high labeling costs. Training a melanoma biopsy diagnosis

system would require researchers to collect and label protected health information (PHI) data

from various hospitals. Developing a mobile screening application for children with autism

spectrum disorder (ASD) would require clinicians to label thousands of video streams from

children. Deploying a neural network-based query optimization model would require the
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database management system (DBMS) to label hundreds of queries in real-time. Labeling

all data samples is infeasible in these scenarios. When data or labels are scarce, the machine

learning system faces a “low-resource” challenge.

Fortunately, scientists have discovered this data-hunger limitation of deep learning models

and have investigated this problem extensively in the past few years. To address the scarcity

problem of training data and learn from small datasets, researchers have invented various

algorithms, including meta-learning, few-shot learning, self-supervised learning, and genera-

tive methods. Recently, scientists found that “language models are few-shot learners” in the

Generative Pre-trained Transformer v3 (aka GPT-3) [3]. Similarly, bidirectional encoder rep-

resentations from Transformers (BERT) can transfer knowledge in language understanding

to downstream applications [4].

While these promising methods could help machine learning models adapt to small

datasets, these models still need to learn from an enormous corpus in the pre-training stage.

So, data acquisition and model improvement should run in parallel, and researchers need an

active pipeline.

1.2 Challenge: Data Shifting

On the other hand, if models need to run parallel with data collection, distribution and data

shifts might happen: deploying face recognition models to a different population group or

applying a hematoxylin and eosin (H&E) stained analysis method to another hospital with a

different brand of scanner. The data shifting problem is particularly severe for small datasets

because the lack of data would lead to poor generalizability of the machine learning model.

As we agree with Domingos’ and Sambasivan’s opinions above on the importance of data

and labels, an intuitive way to resolve the data shift problem is to acquire more labels after

deploying deep learning models to the real-world. When a handful of new data become avail-

able to the system, researchers should decide which data to label to maximize the labeling

utility. For instance, labeling a “fear” or “surprise” face is more valuable than labeling a

“happy” face in facial expression recognition applications, because current algorithms and
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models often fail to identify fear and surprise in facial images. Labeling “atypia” or “in

situ” diagnoses is often more important than labeling invasive cancer because the diagnosis

of “atypia” v.s. “in situ” could affect treatment plans for patients. Machine learning re-

searchers have designed various algorithms for this active learning scenario to decide which

data should be labeled first, but these methods are often independent of traditional data-shift

applications.

Challenged by the severe distribution shift problem, many machine learning models dete-

riorate after deployment for real-world applications. Active learning, uncertainty sampling,

and many other exploration-versus-exploitation algorithms step in to mitigate this problem.

While these techniques are promising in simulations, more challenges exist in real-world ap-

plications. Topol [5] pointed out that most deep learning studies were published with in

silicon validation, which uses computer-based validation and testing sets. These validation

sets are usually from the same distribution as the training set, and this “Silicon Valley-

dation” method [5] might be too optimistic for many real-world problems, such as medical

diagnosis and behavior analyses. Hence, adapting trained models to novel data would be

necessary for robust deep learning uses. Researchers still face the unsolved problem of limited

annotation resources.

1.3 Definition: Low-Resource Learning

Although machine learning applications suffer from data scarcity and data shifting problems,

the biological counterpart of artificial neural networks, actual human brains, can address

these problems flexibly and efficiently. When facing new data in a specific problem, humans

are usually aware of the data’s novelty, can adjust their confidence, and actively learn from

the new data later on. Moreover, human beings can plan, organize, and employ strategies

to solve problems in new domains with only a few labeled data samples. These different

cognitive shifting abilities are all related to the human prefrontal cortex, which inspired us

to create a unified framework to solve different data-adaptation problems.

Based on the two challenges discussed above, we define the low-resource data adapta-



4

tion problem as:

• how to train a neural network-based model from a set of partially labeled source

datasets so that the model can quickly adapt to novel and small target datasets.

• how to determine the confidence of a model to a novel data sample, how to detect data

shifts, and how to rank the labeling priority for unlabelled data so that higher-priority

data can provide more utility if labeled.

The low-resource adaptation problem is similar to many meta-learning, few-shot learning,

and semi-supervised learning problems. However, datasets are only partially labeled in our

setting, and we assume that researchers can request a few additional labels if more labeling

resources are available. This interactive setting makes the data adaptation process more

challenging.

1.4 Solution: A Unified Framework – UDA

We propose a unified data adaptation (UDA) framework that addresses data shift in the

low-resource learning setting. The framework can encode a data sample into an embedding

vector, where its decoders can use this vector for self-adaptation, synthetic data generation,

and confidence estimation. This framework will also utilize confidences to rank uncertain

target data samples by their utility, so that human annotators can choose to label the highest

utility samples when they have more labeling resources.

Previous studies have explored active learning, dataset shift, meta-learning, and transfer

learning separately. Inspired by the biological prefrontal cortex in human brains, which can

simultaneously perform these adaptive tasks, we connect these machine learning components

with a single versatile encoder and a group of decoders. The main contribution of this study

is not to create brand new methods for machine learning, but to unify existing yet separated

machine learning tasks together so that future researchers can apply the proposed framework

for their low-resource learning and adaptation applications.
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Bridging the background knowledge in human brains and artificial neural networks, we

first introduce information encoding in Chapter 2 and data adaptation in Chapter 3. Then,

in Chapter 4, we propose our unified framework, UDA. With this framework, we tackle

real-world problems. In the medical imaging application (Chapter 5), UDA adapts to a new

type of label with only a few weakly-supervised annotations, where it outperforms previous

diagnostic classification approaches. In the facial expression recognition application (Chapter

6), UDA learns from several large public datasets and then infers on unlabelled data from

children. In eye-tracking applications (Chapter 7), in addition to adapting from several public

datasets, UDA can predict its confidence on new participants and perform gaze calibration.

In the database optimization application (Chapter 8), UDA detects data shifts, generates

synthetic data samples, and quickly adapts to new data distributions. At last, after discussing

limitations and future opportunities in Chapter 9, we conclude this work in Chapter 10.
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Chapter 2

INFORMATION ENCODING

Many neural network-based models, from the 1950s Perceptron algorithm [6] to the 2020s

large pre-trained foundation models [7], draw inspirations from biological neurons and human

behaviors.

2.1 Information Encoding in the Human Brain

The academic concept of information encoding first appeared in the psychology community

in the 1880s [8]. Modern cognitive psychology studies, such as [9], have shown that human

brains can: (1) encode, store, and recall information; (2) learn and adapt from previous

experiences; and (3) build representations of data relationships. In summary, the information

encoding ability of Homo sapiens can convert perceived data to a construct and then restore

the data within the brain later, as shown in Figure 2.1.

Numerous unknown mysteries exist in neuroscience research and deep learning studies.

Nevertheless, current knowledge about human brains has already influenced the design of

intelligent machines and algorithms. For instance, this memory encoding ability inspired

the long-short term memory (LSTM) and the gated recurrent unit (GRU) for temporal data

analyses. In the following sections, we focus on the impact of encoding theory in machines -

signal processing and machine learning.

2.2 Information Encoding in Signal Processing

Defining the concept of information encoding for communications systems, Claude Shannon

created mathematical tools for data compression and founded information theory [10]. As
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Human Brain Information Encode Store Recall Information

Shannon Sender Transmitter Channel
(+ noise)
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Figure 2.1: Encoder-decoder design in different research domains. The first row shows

memory encoding theory for human brain. The second row shows Shannon’s general com-

munication system [10]. The third rows shows equations for principal component analyses

(PCA) for data dimensionality reduction [11, 12]. The fourth rows illustrates the Wake-Sleep

algorithm [13] and the last rows shows the autoencoder design for unsupervised learning [14].

shown in the second row of Figure 2.1, Shannon’s general communication model1, which

transmits information between two agents, follows the human brains’ activities to encode,

store, and recall memory.

Based on the communication model, Shannon further analyzed information entropy,
n∑

i=1

pi log2(pi), to characterize the amount of information carried inside a data sample. In

the formula, pi is the probability that event i would occur from n possible outcomes. As

Shannon claimed that “Information is the resolution of uncertainty,” this information entropy

value can measure uncertainties for a given sequence of data. Since the 1950s, researchers and

experts have explored the concept of information entropy, both in the time domain and the

1The Shannon-Weaver model of communication, another variant of the Shannon’s general communication
model, is widely used in social science.
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frequency domain, to analyze time-series data. These concepts still thrive in modern deep

learning. For instance, as a non-linear loss function, cross-entropy can help train classifiers;

by comparing two probability distributions, Jensen-Shannon divergence or Kullback-Leibler

divergence can train generative models; by utilizing randomized algorithms, entropy-based

sampling is a fundamental active learning tool.

Decades before Shannon’s information theory, many researchers focused on the statistical

perspective of dimension reduction. After inventing the famous product-moment correlation

coefficient [15], Pearson created a method to find the closet fit for points in a space in

1901 [11]. Without knowing Pearson’s work, Hotelling invented a similar mathematical tool,

principal component analysis, to reduce data dimensionality in 1933 [12]. Although not

inspired by neuroscience, this principal component analysis (PCA) strategy and the singular

value decomposition (SVD) [16] algorithm are still similar to the brain’s encoding process.

These methods inspired researchers to combine neuroscience inspirations and mathematical

tools for information encoding in complex neural networks.

2.3 Information Encoding in Artificial Neurons

The Perceptron algorithm [6], inspired by biological neurons, creates a sigmoid function with

a simple neuron. Rosenblatt further developed the multi-layer perceptron (MLP) model [17]

in 1961, which connects different layers of neurons together to form a neural network. How-

ever, the Perceptron and MLP methods failed to fulfill scientists’ ambitions. At that time,

nobody can efficiently train complex neural networks even if the MLP model can represent a

complex decision process. More than two decades later, based on the chain rule and partial

derivatives, Rumelhart, Hinton, and Williams [18, 19] created the backpropagation algorithm

to train MLPs. With this effective algorithm, researchers investigated more complex models,

such as convolutional neural networks (CNNs) and Transformers.

A decade later, the Helmholtz Machine and the Wake-Sleep algorithm [13], connecting

human behavior and machines, use two neural networks to encode and decode informa-

tion: during the wake phase, the discriminative network encodes data to a low-dimensional
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representation; during the sleep phase, the generative network restores the data with the

compressed representation. Another decade later, Hinton et al. continued this idea and

invented the autoencoder (aka, encoder-decoder) [14] for unsupervised learning. While the

architecture is similar to the previous wake-sleep algorithm, its mathematical goal is to

extend the PCA dimension reduction technique with non-linear higher-order functions.

Also inspired by the brain’s encoding capability, Rao and Ballard [20] invented a pre-

dictive coding system for natural images. Their hierarchical predictive coding algorithm,

which resembles “simple-cell-like” receptive fields, is consistent with the biological visual

cortex. The predictive coding behavior of the human brain and neural network continuously

influences modern researchers. Lotter, Kreiman, and Cox invented PredNet [21] in 2017 to

perform predictive coding in videos. This strategy later inspired self-supervised learning and

other unsupervised learning approaches in computer vision (e.g., [22, 23, 24, 25]). Recently,

[26, 27] extended this self-supervised learning concept and improved vision transformers by

a large margin.

2.4 Summary

Information encoding exists in both the human brain and artificial neural networks. The in-

ternal data representation in latent space could be essential for low-resource data adaptation.

Inspired by the human brain and human behavior, self-supervised learning, foundation mod-

els, and other recent learning algorithms could mitigate the low-resource learning problems.

The next chapter will discuss these methods in low-resource adaptation.
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Chapter 3

LEARNING AND ADAPTING

With the information encoding knowledge introduced from the last chapter, we discuss

learning and adapting skills in humans and machines here.

3.1 Adaptation in Humans: Executive Functioning Skills

Human executive function skills, including task shifting, inhibition of prepotent responses,

and short-term memory, have inspired some recent deep learning approaches to address

adaptation problems. For instance, educators often expose children to new environments

and tasks to train children’s cognitive flexibility [28], which inspired recent meta-learning

[29] and few-shot learning [30] studies. Similarly, learning from multimodal information can

help children adapting to new challenges [31], and this multimodal learning approach has

been recently applied to analyze brain tumors [32], recognize activities [33], and understand

visual scenes [34]. Studying humans’ task shifting ability could benefit engineers designing

flexible frameworks for data adaptation in machine learning applications.

In the last few years, we developed a mobile video game [35] to explore and quantify

executive functioning skills in children with autism spectrum disorder (ASD), separately

considering the social and the nonsocial performance to disentangle broader patterns of

cognitive deficit specific to the disorder. We found that children with autism have different

patterns in short-term memory and inhibitory response to angry facial expressions. We

also modified and applied this mobile game to help patients with temporal lobe epilepsy

from developing regions [36], and our results suggest that nocturnal temporal lobe interictal

epilepsy is closely associated with short-term memory performance and visual attention.

We used both standard psychological approaches and machine learning methods to analyze
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participants’ behavior, and we found that executive functioning skills are closely related to

developmental level and brain activity.

Researchers usually associate executive functioning skills with the prefrontal cortex, the

front region of the frontal lobe in the human brain [37]. While the human prefrontal cortex

has higher activation during creative problem-solving [38], this region is also related to mem-

ory, attention, and language generation. Moreover, the prefrontal cortex has implications

for the generation of slow-wave sleep [39], which corresponds to the “sleep phase” (i.e., a

generative pass) in the Helmholtz Machine [13] as mentioned in the previous chapter.

These facts inspire us to include memory, attention, and generative methods in our

adaptation framework, because the prefrontal cortex can perform all these tasks. In the

last decades, machine learning researchers have created artificial neural networks for these

cognitive tasks (i.e., memory [40], attention [41], generation [42], and wake-sleep [13]), which

are the cornerstones for our adaptation framework. The following sections focus on learning

paradigms that involve deep learning models.

3.2 Adaptation in Machines:

The pervasive data shifting problem in machine learning applications could be intentional

or unintentional. For instance, researchers can intentionally use and adapt an existing ma-

chine learning model for a novel problem (e.g., fine-tune a pneumonia model for COVID-19

diagnosis). A machine learning model trained on unintentionally biased data could fail dur-

ing testing. Previous studies usually regard these data adaptation problems with different

methodologies, including transfer learning, multi-task learning, domain adaptation, and ac-

tive learning.

3.2.1 Transfer Learning: the Foundation of Adaptation

As the fundamental method for data adaptation, transfer learning assumes the feature ex-

tractor to be a stochastic learner, such as a logistic regressor, a support vector machine,

or a neural network. During transfer learning, stochastic optimization algorithms, such as
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stochastic gradient descent [43, 44] or the Adam optimizer [45], would fine tune the pre-

trained model on the target dataset. This learning strategy can transfer learned knowledge

from massive source datasets to smaller target datasets, where the source and target dataset

usually have relevant but still distinct data distributions. The word “transfer” is an umbrella

term for various types of transferring methods, including supervised, unsupervised, induc-

tive, and transductive. We refer readers to a comprehensive survey on transfer learning [46]

for more examples.

The following sections introduce some well-known extensions of the transfer learning

method. We note that these algorithms are usually closely related to each other, because

their goals are similar – data adaptation. However, subtle differences among them drive

researchers to perform radically different analyses in these subareas.

3.2.2 Multi-Task Learning and Foundation Models

Multi-task learning (MTL) applies transfer learning on multiple tasks, which can diversify

source datasets and benefit the feature extractor. Researchers can train the machine learning

model from one dataset, where each datum contains several labels, or from multiple datasets,

where different datasets might contain different types of labels.

In recent years, researchers have applied the multi-task learning method from huge

datasets to adapt the pre-trained models to various downstream applications. Nowadays,

researchers call this type of models a “foundation model” [7], such as BERT [4] and GPT-3

[3]. A few months ago, researchers even trained foundation models with over a hundred tasks

[47]. This multi-task learning method is also related to meta-learning, another method to

learn from multiple datasets.

3.2.3 Meta-Learning and Few-shot learning

Inspired by the learning process of children, the meta-learning (aka, learning-to-learn) algo-

rithm observes how other learners can learn novel tasks. As shown in Figure 3.1, unlike MTL

that learns directly from multiple datasets, the meta learner needs to learn from different
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learners. Mathematically, this learning process yields a second-order optimization problem.

Model-agnostic meta learner (MAML) [48] is a well-known model that can perform second-

order optimization by splitting training datasets into training and validation, where the first

order of learning is from the sub-training set, and the second-order of learning is from the

sub-testing set. Besides MAML, researchers invented many other efficient algorithms in the

past five years, and we will discuss them in the following chapter.

θ1

θ2

θ3

θMTL θMeta

θ1

θ2

θ3

Figure 3.1: Differences between multi-task learning (MTL) and meta-learning (Meta). The

optimal MTL model θMTL is visualized on the left-hand side, and the optimal model for

meta-learning θMeta is on the right-hand side. Denote θi as the optimal model for training

task τi. We provide this visualization with three meta-training tasks, and assume the model

will perform two gradient updates (red arrows) during inference time.

As the name suggests, few-shot learning only allows a model to learn from a few data

samples for a new task. So, many different algorithms, for instance, the multi-task learning,

the foundation models, and the meta-learning algorithm, all belong to the few-shot learning

paradigm. One of the most significant challenges in few-shot learning is the high-dimension,

low-sample-size problem (i.e., n < p) [49], where the model could struggle to learn general-

izable features.
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3.2.4 Unsupervised and Self-Supervised Learning

While the above meta and few-shot models usually learn from supervised tasks, unsupervised

learning is a mechanism to learn from abundant unlabelled data. The reconstruction task

and autoencoder model [14] discussed in the previous chapter are examples of unsupervised

methods used to pre-train deep learning models. Also inspired by neuroscience, predictive

coding [20] is another common strategy for unsupervised learning. Recently, Kaiming He and

many other researchers applied data augmentation for unsupervised learning, which includes

masking [27] and frame predicting [21].

As a subset of unsupervised learning, self-supervised learning can learn from unlabelled

and partially labeled data. For instance, in the teacher-student models (e.g., [50]), the

“teacher” model would learn from labeled samples and infer unlabelled samples; then, the

“student” model would learn from the teacher’s predictions. In this scenario, the teacher

distills valuable knowledge from the partially labeled source dataset for students to learn. In

another setting, a self-supervised learner, such as Word2Vec [51] and the foundation model

BERT [4], can use data augmentation or contrastive learning to gain knowledge.

3.2.5 Domain Adaptation

Researchers define “domain adaptation” as the ability to adapt from some source “domains”

to a different target “domain.” While this definition is very similar to the definition of

transfer learning, domain adaptation usually assumes the source and target datasets are

from different domains or even modalities. Researchers have designed several domain adap-

tation approaches, including low-resource learning [52], representation learning [53], and

self-supervision [54].

3.2.6 Weakly Supervised learning

While data are from different domains in the previous scenario, labels are only weakly relevant

in this weakly-supervised learning setting. For instance, researchers might only have coarse
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annotation for each image, but the downstream application needs detailed prediction on

each pixel for segmentation. This type of task is usually more complex than simple domain

adaptation, and we refer readers to the extensive survey paper [55].

3.2.7 Distribution Shifts and Active Learning

While the above methods are post-hoc algorithms, distribution shift needs real-time adap-

tation. Machine learning researchers have studied several shifts, including covariate, prior,

concept, and domain shifts. After deploying a trained model for production, researchers

might find that the incoming data samples might drift from the training set. For instance,

after training a deep learning model on data from adults, researchers found that the major

users are children, who have entirely different usage patterns. The standard and most effec-

tive strategy to adapt shifted data is to collect additional labels. However, when numerous

data samples are available, the main question is how to select a limited amount of data

samples to maximize the utility of labeling.

So, computer scientists have also designed several methods to address these problems.

Balancing exploration and exploitation, multi-arm bandit machines [56] can detect meaning-

ful data samples for labeling, where the upper confidence bounds algorithm [57], exponential-

weight algorithm for exploration and exploitation (EXP3) [58], and similar algorithms have

shown promising results in this setting. Similarly, active learning studies have applied

margin-based [59], entropy-based [60], query-by-committee [61], expected model change [62],

uncertainty sampling [63], expected error reduction [64], diverse subspace incorporation [65],

and variance reduction [66] to choose unlabeled data.

3.3 Summary

As discussed, these advanced adaptation methods are closely related to each other, but they

are usually used separately in different applications. The similarity of these data adaptation

tasks and the distinctness of machine learning literature motivated us to unify them into a

single framework.
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Chapter 4

METHODOLOGY

Bringing inspiration from the prefrontal cortex to adapt to low-resource learning prob-

lems requires rigorous scientific explorations and non-trivial engineering efforts. We propose

a unified data adaptation (UDA) framework to fulfill machine learning and engineering goals.

The proposed framework can utilize self-supervision, meta-learning, domain adaptation, ac-

tive learning, generation, and other relevant tasks to train generalizable models for data

adaptation.

UDA aims to learn and transfer representations from source datasets to the small target

dataset and future shifted data with self-adaptation. During training (the development

thread), UDA can learn a common data representation technique from multiple external

datasets and diverse tasks. This learning problem is similar to a model initialization problem,

where multi-task learning Algorithm 1 and meta learning-based Algorithm 2 help UDA for

training. During inference (the production thread), UDA can estimate confidence towards

incoming data, evaluate variance on its decisions, detect the severity of data shifts, and

evaluate trained models. If data shifts are small, UDA can automatically adapt to the slight

change; when catastrophic shifts occur, UDA will require further data annotation, training,

and re-evaluation from researchers. To facilitate these model adaptation goals, UDA can

also estimate models’ confidence toward new data samples.

UDA is not the first framework that applies multi-task learning, pretraining, active learn-

ing, or adaptation technique for neural networks. However, only a few studies combine these

tasks into research and production. Inspired by the biological counterparts of human brains,

UDA unifies these seemingly separated machine learning tasks together in a simple frame-

work.
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In this chapter, we first describe the design of UDA (Section 4.1) and two important

threads and processes. Then, each neural network component (Section 4.2) is discussed,

and a few toy examples for some components are simulated in Section 4.3. Algorithms and

theoretical analyses are presented in Section 4.4 to develop the UDA system.

4.1 Overview

To accomplish these machine learning and engineering aims for low-resource adaptation, the

UDA framework contains a versatile encoder and several decoders.The versatile encoder, E ,

can encode a datum x (either from dataset S, dataset T , or other sources) to a fixed-length

d-dimensional embedding vector in (−1, 1)d. Taking an embedding as input, each decoder D

has different functionalities for either supervised, unsupervised, or semi-supervised learning.

This section illustrates how these components would interact in different stages.

The development and production stages are typical in machine learning cycles. However,

the word “stage” might be inaccurate to describe UDA ’s behavior. These two stages are

usually interdependent, and they often happen concurrently. So, in our discussion, we refer

to UDA as using two “threads”: the development thread and the production thread. The

development thread runs across a machine learning pipeline’s whole life cycle. On the other

hand, the production thread deploys the trained models for users (e.g., consumers, doctors,

a computer system) after the initial training process converges. In reality, data and machine

learning systems are dynamic; these two threads collaborate to make better predictions,

estimate confidence, detect data shifts, and tune the model.

The ultimate goal of the development thread is to train a model that can perform ac-

curately on the target task without overfitting to the small training set. To achieve this

goal, UDA includes several decoding tasks to escape local optimum and regularize weights

for small target datasets. UDA uses the idea of college curriculum design to learn from all

courses (decoders) first. Then, it fine-tunes the target tasks. Machine learning literature has

explored this idea extensively, and Section 4.4 discusses this training process.
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Figure 4.1: Illustration of the versatile encoder (blue), auxiliary decoders (yellow), and the

target decoder (green) of the unified framework: in the development thread (with light

blue background), all data and all decoders, including the target decoder, participate in the

training process. In the production thread (with light red background), the encoder takes a

datum as input and produces an embedding vector (black), while a copy of the target decoder

(D′
tgt) takes an embedding vector as input and produce outputs for users. The system will

further use these new incoming data for developing and fine-tuning. When the confidence

is low or irresolvable data shifts happen, the system would inform developers/maintainers

of this system. Yellow arrows represent data flow in the development thread, while green

arrows represent data flow in the production thread. For visual conciseness, we excluded

details about different decoders (e.g., generative decoders and segmentation decoders) in

this figure.
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4.1.1 Development Thread

Training the encoder and decoder models mentioned above is the first step of machine learn-

ing model production. Developing a generalizable model could foster better adaptation to

small datasets and faster adaptations to data shifts. Moreover, the development thread is

not a one-time process in UDA. Because of the unpredictable nature of data shifts, UDA

would continue to train, tune, and develop models concurrently during the production phase.

In low-resource learning settings, researchers usually have limited access to the actual

data. So, learning from unlabelled data and external data could mitigate the data shortage

problem. Supervised and unsupervised learning are included in the development thread to

help the encoder learn from various data.

Based on multi-task learning and meta-learning, Algorithm 1 and 2 can help the encoder

learn from various tasks. If the performance and convergence of these tasks satisfy minimum

viable requirements, UDA would yield a production thread for deployment. This develop-

ment thread is still ongoing to learn from newly-arrived data during the production and

inference phase.

Training in the development thread could help adapt to novel data because of the training

disparities from multiple decoding tasks and source datasets. However, the trained models

are still vulnerable to bias in the training datasets. So, the production thread would continue

adapting to actual data.

4.1.2 Production Thread

After deployment, the production thread must monitor the performance and degree of data

shift in non-stationary environments. As many prior studies found, models’ performance

would deteriorate when data shifts from the training distribution. Hence, in addition to

producing outputs for users, detecting performance drops and data shifts is another goal of

the production thread. When data shifts are detected, UDA will fine-tune, re-train, request

additional labels, or ask researchers for further help.
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In most production pipelines, labels for newly-arrived data are not easily accessible until

further annotation. In this condition, the confidence estimation function fconf can evaluate

UDA’s confidence or variation on its predictions. When UDA shows low confidence or high

variance, the system is unable to deal with the data shift and would request additional

data annotation from researchers. In the meanwhile, unsupervised decoders in UDA would

continue to study feature representation from these newly arrived data samples.

When labels for newly-arrived data are available (e.g., in a cancer diagnosis pipeline, when

doctors confirmed/corrected the models’ predictions), the production thread would invoke

the development thread to perform additional training with these labels. For instance, fine-

tuning, re-training, or re-evaluation could be performed concurrently in the development

thread.

The development thread and the production thread depend on the encoders and decoders

design; the following section discusses these components.

4.2 Components of the UDA

Modulization can allow researchers to freely choose needed components from UDA. However,

if models are modularized too thin, more coding effort would be necessary to create a machine

learning pipeline. To balance the flexibility and usability of modules, we split machine

learning models into a versatile encoder and several decoders for each task.

For instance, the target decoder Dtgt can take an embedding as input and perform super-

vised learning to predict the labels in the target dataset. The generative decoder Dgen can

take a noise vector to produce a synthetic data sample. The discriminative decoder Ddis can

decide whether data are from the source datasets, the target dataset, or the generator. The

reconstruction decoder Drecon can reconstruct the original datum by using embeddings from

a corrupted input. The confidence estimation function fconf can calculate how confident the

system is of its predictions. We also provide a list of additional decoders for the encoder to

learn data representations from diverse tasks, e.g., contrastive learning, reconstruction, and

noise reduction.
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The biological counterparts of human brains also inspire the separation of decoders.

While the prefrontal cortex is the main power for executive function skills to detect and

handle shifts, different brain parts are responsible for different information processing. The

goal of UDA is not to fully emulate a biological brain or embody human brains to artificial

neural network-based decoders. Instead, UDA should balance machine learning tasks and

engineering considerations to adapt to small datasets and detect data shifts with limited

resources. Separating the encoder from the decoders can help researchers fine-tune underlying

machine learning models. It also creates a specific mathematical problem, as shown in Section

4.4, where the encoder’s learning burden is alleviated by collaborating with the decoders.

4.2.1 Versatile Encoder

The encoder, as a crucial module in UDA, lives from the beginning of model pretraining to

production. The encoder’s primary responsibility is to find a suitable feature representation

so that (1) data information can be encoded efficiently and (2) essential features can be

extracted for future tasks. The intuition of encoders and decoders comes from neuroscience,

which tells us that that human memory can encode, store, recall, and decode information

[8]. Recently, unsupervised learning models, the “autoencoder” (aka, “encoder-decoder”),

further applied the encoding theorem into neural networks [14].

Similar to [14], the UDA uses neural networks as versatile encoders, which can contain

linear layers, convolutional layers, recurrent layers, and attention layers. More than one

encoder might exist in multi-modality fusions and some other scenarios. For conciseness, we

only discuss adaptation scenarios when only one encoder is available, and we will discuss

multi-encoder cases briefly in Section 9. The versatile encoder also has several options to

extend its capabilities.

Besides standard activation layers, normalization layers, and dropout layers, optional

Monte Carlo (MC) dropout layers can help the encoder. While standard dropout layers

could avoid overfitting, the Monte Carlo dropout layer can help calculate confidence scores

and perform variational inference for input data samples. This optional MC dropout layer
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could help UDA to detect data shifts in the production thread. Similar to the MC dropout

layers, variational Bayes [67] can calculate variance for input data. Kingma’s variational

autoencoder design is consistent with our encoder-decoder structure, which is another option

for efficient variational inference in UDA.

Ronneberger et al. [68] found skip connections (aka, residual connections) between the

encoder and decoder could help the model perform better on complex tasks. For instance,

the semantic segmentation task usually requires low-, mid-, and high- levels of informa-

tion, where skip connections can propagate these features. So, UDA also provide auxiliary

skip-connection outputs where some decoders can utilize this information for more complex

tasks. If the decoders use skip connections, corresponding decoders should have a symmetric

architecture with the encoder.

These various options (MC dropout layer, variational Bayes layer, skip-connection out-

puts) can accommodate different applications. For instance, traditional classification and

regression tasks (e.g., facial expression [69]) only need a standard encoder, and these options

can all be turned off. With the variational Bayes layer turned on, a variational encoder can

be helpful for real-time active learning systems (e.g., adaptation in DBMS [70]). An MC en-

coder, with the MC dropout layer, can help build calibration systems for eye-tracking, facial

expression analyses, and other personalized models [71]. The optional skip connections from

the encoder to other decoders can help instance segmentation for medical image analyses

(e.g., in cancer analysis [72]).

4.2.2 Classification and Regression Decoders

With the encoder module, UDA can accomplish many different tasks by adding different

decoders. Classification decoders use cross entropy-based losses to train the model, and

regression decoders use mean squared errors (MSE) or mean absolute errors (MAE) during

the training process. UDA also provides hinge loss, negative log-likelihood, Kullback-Leibler

divergence, and other functions to train the model. The classification and regression decoders

have the same structure, usually containing a sequence of fully connected layers, dropout



23

layers, and activation layers. These decoders are the foundations of other types of decoders.

4.2.3 Reconstruction Decoders

While classification and regression are standard tasks in supervised learning, reconstruc-

tion is the most common task in unsupervised learning. Many previous studies (e.g., [14])

have explored the reconstruction task, and other unsupervised learning studies adapted sim-

ilar structures for predictive coding, de-noising, data recovering, and other tasks. In these

tasks, the input for and output from the neural network are in the same data space (e.g.,

Rheight×width×3 for RGB images), and most of these algorithms adopt the encoder-decoder

architecture.

The UDA framework combines the original reconstruction task with these novel unsuper-

vised learning architectures to form a unified reconstruction decoder Drecon. The architecture

of reconstruction decoders can be either standard fashion or skip-connection fashion. The

traditional reconstruction decoder only uses the latent feature vector as input with the stan-

dard autoencoder design. On the other hand, the skip-connection reconstruction decoder

employs information from all encoder’s layers as inputs (e.g., U-Net). The skip-connection

reconstruction decoder is also a base class for generative decoders, segmentation decoders,

and detection decoders below.

4.2.4 Discriminative Decoders and Generative Decoders

In the machine learning literature, discriminative models usually draw boundaries in the in-

put space, and generative models aim to learn the distribution of data in the space [73]. Com-

bined with a generator and a discriminator to construct the generative adversarial networks

(GAN), Goodfellow et al. [42] created a novel unsupervised learning and data generation

method through an mini-max training process.

The GAN architecture can help a machine learning pipeline learn an input space and fea-

ture representation. Moreover, there is sizable prior work in the machine learning literature

on the GAN to generate realistic synthetic image, text and audio examples [74, 75, 76] which
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in turn have helped to train object detectors and image segmenters [77, 78]. This design also

enables data augmentation in medical images, modality transfer with cycle consistency loss,

and interpretable models. These data synthetic and data augmentation algorithms from the

GAN can further help UDA to adapt data shifts more efficiently.

In the UDA, the generative decoder has the same architecture as the reconstruction

decoder, because both decoders need to reconstruct the input space. The discriminative

decoder is similar to the classification decoder, because both decoders need to distinguish

between different data types. Unlike the previous decoders, discriminative and generative

decoders require mini-max loss during the training process. Because this mini-max loss is a

non-convex function, the system might not have a Nash equilibrium in the zero-sum game

[79]. So, training generative and discriminative decoders could be a challenging task. How-

ever, the UDA has a flexible encoder design (e.g., with a variational Bayes layer), where

other decoders (e.g., the reconstruction decoders) can collaborate to facilitate the encoder’s

learning process. So, these decoders and tasks could improve the training process for the

GAN. Many recent studies, such as VAE-GAN [80] and Wass-GAN [81], use similar strategies

to train the GAN system. During adaptation, generative decoders could help data augmen-

tation methods during the production thread, and discriminative decoders could learn to

distinguish data before and after data shifts.

4.2.5 Segmentation and Detection Decoders

While reconstruction decoders and generative decoders produce outputs from the input data

space, segmentation and detection decoders produce outputs from slightly different spaces.

Semantic segmentation and object detection are two routine tasks in computer vision.

Combining these two tasks, researchers defined instance segmentation as detecting and seg-

menting each distinct object from an image. Researchers also proposed a panoptic segmenta-

tion task to semantically segment background pixels and individually segment each distinct

object of interest based on semantic and instance segmentation.

The segmentation and detection decoders in the UDA ground on the U-Net architecture
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and the Mask-RCNN design. Feature vectors and skip connections from all the encoder’s

layers flow into these decoders, where a region-proposal subnetwork (RPN) will propose

regions-of-interest (ROIs) first, and a segmentation network will perform instance segmen-

tation for these ROIs.

From an engineering point of view, segmentation decoders and detection decoders are the

most complex ones in the UDA, because they contain different subnetworks. However, users

can choose a subset of these decoders for desired tasks: detection, semantic segmentation,

instance segmentation, or panoptic segmentation.

4.2.6 Meta-Learning Decoders

Unlike previous decoders, which usually learn from a single dataset, meta-learning decoders

can learn the initialization of features from multiple datasets or sub-datasets. The UDA

incorporates the prototypical network (ProtoNet) [82] as DProto to learn a metric space by

computing distances on feature representations for each class. The Dproto can be a parametric

network that learns a projection from the encoder’s feature space to a novel space, and it can

also be a non-parametric method that calculates feature distances with pre-defined functions.

4.2.7 Contrastive-Learning Decoders

While Dproto aims for meta-learning and few-shot learning, the SimCLR [83] decoder Dsim

learns contrastively without supervision from labels. Dsim would first apply random data

augmentation for input data and then learn to group augmented data from the source in

the latent space. With a Siamese network design [84], the SimCLR method can learn visual

representations without using extra labels or computer memory. The UDA further extended

this SimCLR design to signals, videos, and feature vectors.
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4.2.8 Confidence Estimation Function

For all the above decoders, confidence estimation abilities are added as a non-parametric func-

tion fconf . As discussed in Section 4.1, this function will continuously monitor the machine

learning pipeline’s confidence toward incoming data in the production thread. Supporting

this vital task flexibly, the UDA includes several different confidence estimation designs.

fconf can utilize the discriminative decoder Ddis to predict data before and after the data

shift. It can also utilize the MC dropout layer with any decoders to predict the model’s

confidence toward an output. This mechanism does not require additional neural layers, but

it would run the inference function multiple times to produce a standard deviation. fconf can

also use embeddings from the variational Bayes layer from E to calculate variance directly.

Using all the components, we can construct complex pipelines to solve many different

problems. The following section simulates three simple scenarios to showcase how different

decoders collaborate to learn, predict, and adapt.

4.3 Simulations

To study the rationalities and effectiveness of each proposed component, we show simple

simulations on reconstruction, generation, and active learning in this section. We will thor-

oughly study the joint training and inference from these components in challenging real-world

problems in later chapters.

4.3.1 Reconstructions Simulation

Self-supervised learning is a common strategy for low-resource data with or without labels,

and simulating a reconstruction decoder could be helpful for all kinds of future studies. Two

experiments are discussed on the CIFAR-100 dataset to reconstruct input data samples.

The first experiment utilizes a classic convolutional autoencoder with a E and a Drecon:

the encoder compresses a 32x32x3 image into 64 values in E , which is only 2.1% of the

original size. Then, the Drecon reconstructs the full image. As expected in Figure 4.2a, even
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if reconstructed images are blurry due to the low compression size, the UDA can still robustly

reconstruct information from the latent space.

In one of our previous studies [85], we found neural networks can learn to remove un-

necessary rows from the MNIST dataset. Inspired by this interesting behavior, we place

random interlacing effects on the CIFAR-100 dataset. Then, a U-Net structure E and Drecon

are applied to fill missing pixels for input images. As shown in Figure 4.2b, the UDA can

successfully predict and reconstruct original images from corrupted inputs.

(a) Reconstructing (b) Recovering with U-Net

Figure 4.2: Illustration for reconstruction tasks in the testing set. (Left) Encoding input

image from 3072 values to 64 values, and then decode it back into the original image format.

(Right) Random interlacing effects, such as blank vertical and horizontal stripes, are applied

to images. The encoder would need to encode known information to a latent space, and the

decoder needs to guess and reconstruct actual images from partial observations. A UNet-

based encoder-decoder structure is used for recovering and denoising here.

4.3.2 Interpretation of Attention from GAN

We use cycle-consistency loss to interpret a CNN’s decision and attention on the MNIST

dataset. In this experiment, the UDA trains an encoder E , two discriminative decoders Ddis,
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and two generative decoders (Da
gen and Db

gen). In this simulation, we define domain A as the

class for “5” and domain B as the class for “2”. These networks should learn how to modify

one handwritten digit to another digit. This naive simulation shows the possibility of using

a GAN to interpret the model’s decisions on classification tasks, such as medical diagnosis.

Unlike the CycleGAN and StarGAN, the architecture used in this experiment utilizes

the versatile encoder E for all structures (i.e., generator A, generator B, discriminator A,

discriminator B), as shown in Figure 4.3a. The versatile encoder acts as a fair judge to only

encode data representations, and decoders (Dgen and Ddis) are responsible for generating

and discriminating from latent vectors. Results are shown in Figure 4.3b, where UDA learns

useful information between the two domains (classes).

4.3.3 Detecting Shifts

Both simulations above are in the development thread, and we simulate a variance estimation

scenario here for shift detection in the production thread. The encoder E and a classification

decoder Dcls collaborate to estimate confidence in this experiment.

We use the original MNIST dataset as the training data, where the pipeline achieved 98%

accuracy in the hold-out testing set. After deploying these models to production, unexpected

data shift (i.e., the interlacing effects discussed earlier) occurs gradually and worsens over

time. The confidence function fconf monitors the pipeline’s confidence in incoming data.

Figure 4.4 shows the severity of incoming data, testing performance, and predicted variance.

We can see a clear correlation among these metrics, which illustrates the feasibility of using

the confidence estimation function in the UDA for future data shifts detection.

4.4 Algorithms and Theoretical Analyses

While the previous sections discuss various components and three simulations, we discuss

two learning algorithms to unify the versatile encoder with the heterogeneous decoders in

this section. Based on recent discoveries in multi-task and meta learning, UDA’s training

algorithms can efficiently and robustly learn from multiple tasks.
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Figure 4.3: CycleGAN Simulation in UDA. (Left): Illustration of the CycleGAN architecture

in the UDA. Each trapezoid represents a model (an encoder or a decoder), where trapezoids

in the same color have the same weights (parameters). (Right):the first column is the input,

the second column is the synthesized output, and the last column is the output attention

from the discriminative decoder for the input, where high-attention values are near the top

or bottom horizontal strikes. The generative and discriminative decoders can help synthesize

more data and be used for decision interpretation.

When only limited low-resource data are available, machine learning models need to learn

from diverse tasks, obtain generalizable parameters, and avoid overfitting small datasets. We

assume all decoding tasks τi are from the same distribution, p(τ). Below, we propose two

distinct methods: the multi-task learning approach is fast and convenient but sometimes

cannot escape from local optimum; the meta-learning approach is slower but is less vulnerable

to saddle points.
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Figure 4.4: Severity of Data Shift and UDA Variation Prediction. Left: the severity of data

shifts (corruption) increases row-by-row. Right: the machine learning pipeline’s accuracy

(colored in red) over shifted distribution, and UDA variation prediction (colored in blue).

Their correlation is around -0.97.

4.4.1 Multi-Task Learning Approach

The UDA can apply multi-task learning (MTL), as many prior studies have done, to learn

from various decoders and tasks. The MTL approach can combine losses and learn jointly for

different tasks. In Equation 4.1, let L represents the loss, and let Li represents the training

loss for training task τi. The goal is to minimize the training loss, that is minL. We denote

Eϕi
as a trained encoder for task τi. The phrase “τi ∼ p(τ)” means selecting the task τi from

the population of all decoding tasks, p(τ). Let ϕ represents the weights (parameter values)

of a neural network, and ϕE represents the weights of the versatile encoder. Equation 4.2

shows the update rule for optimizing the encoder’s parameters. Table 4.1 shows the notation

used in these analyses.

min
ϕE
L(ϕE) = min

ϕE

∑
τi∼p(τ)

LTi(Eϕi
) (4.1)

With a learning rate of α, the optimization goal is:
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Set Notation Meaning

Model

E The versatile encoder

Di The decoder for task i

Ẽ A temporary deep copy of the encoder

ϕ Parameters for a model

ϕ̃ Empirical parameters

Eϕ The encoder with parameters ϕ

ϕE Parameters for the encoder

ϕDi
Parameters for the decoder i

U(ϕ, τi) Updates for parameters ϕ on task τi

Data

S A collection of source datasets

T The target dataset

N New incoming data for the target dataset

xi, yi ∼ S A data sample and its label from dataset S

Task

τi The i-th decoding task

p(τi) Population of all decoding tasks

τi ∼ p(τi) Select i-th task from the population of all decoding tasks

τtgt The target task

Training

L Loss for the UDA system

LTi Training loss for the i-th decoding task

L̂Ti Testing loss for the i-th decoding task

gi Gradient obtained from training on task i

Table 4.1: List of common notations used for equations and analyses.
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ϕE ← ϕE − α∇ϕE

∑
τi∼p(τ)

LTi(ϕEi) (4.2)

Based on this straightforward loss and optimization equations, we list the simple learning

algorithm in Algorithm 1, where descriptions for each line are colored in blue.

Algorithm 1: Training with Multi-Task Learning in UDA.

Input: E (the encoder), {D1,D2, ...,Dt} (list of decoders), {τ1, τ2, ..., τt} (list of

decoding tasks), α (learning rate).

while Not Done do

x, y ∼ S ; // Sample data (and labels) randomly from datasets.

L ← 0

for τi ∈ p(τ) do

LTi ← Loss(E ,Di|x, y) ; // Calculate the loss for task i.

Di ← Update(LTi ,Di, α) ; // Update i-th decoder.

L ← L+ LTi

end

E ← Update(L, E , α) ; // Update the encoder.

end

Fine-tune E ,Dtgt for target task τtgt ∈ p(τ) ; // Fine-tune for the target task

4.4.2 Meta Learning Approach

Besides using multi-task learning, the UDA can also phrase the data-adaptation problem as

an encoder initialization quest. The UDA needs first to learn a common encoding representa-

tion from diverse decoding tasks; then, it can adapt to the target small dataset. So, similar to

meta-learning problems, learning the initial encoding representation is the ultimate goal for

the development thread. Based on model-agnostic meta learners (MAML) [48], the learning

goal for the versatile encoder can be phrased as Equation 4.4.
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Following the notations used above, we additionally denote L̂Ti as the testing loss for

task τi. The meta learning goal follows:

min
ϕE
L(ϕE) = min

ϕE

∑
τi∼p(τ)

L̂Ti(Eϕi
) (4.3)

= min
ϕE

∑
τi∼p(τ)

L̂Ti(Eϕ − α∇ϕELTi(Eϕ)) (4.4)

Here, α is the learning rate for each decoding task. Let β be the learning rate for the

versatile encoder. ∇ϕE represents the partial derivative for parameters ϕE , and ∇2 represents

the second-order derivative (i.e., Hessian matrix).

Then, we can update the weight for E , ϕE , as follows:

ϕE ← ϕE − β∇ϕE

∑
τi∼p(τ)

L̂Ti(ϕEi) (4.5)

= ϕE − β∇ϕE

∑
τi∼p(τ)

L̂Ti(Eϕ − α∇ϕELTi(Eϕ)) (4.6)

= ϕE − β
∑

τi∼p(τ)

(I − α∇2
ϕE
LTi(Eϕ))∇ϕE L̂Ti(Eϕ) (4.7)

The main distinction between UDA and MAML is the existence of various decoders. In

MAML, the model aims for a single stationary point ϕ⋆ where the model can quickly adapt

to all training tasks. However, UDA only needs to reach a stationary subspace rather than

a single point. The decoders can project from the subspace to other points, simplifying the

training process.

The optimization goal with second-order gradients requires additional memory and com-

putation time, which could be burdensome in the already slow development thread. In pre-

vious meta-learning studies, Hessian-free optimization methods can learn more efficiently:

for instance, using Newton’s method to estimate the Hessian (e.g., HF-MAML); using a

constant to replace the inner gradient (e.g., FO-MAML); or applying implicit Jacobian to
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compute the meta gradient (e.g., iMAML). In this study, we adopt ideas from the Reptile

[86] with first-order gradients to train the UDA framework.

Due to the existence of decoders, we modify Reptile and create the algorithm below

(Algorithm 2). Instead of performing one gradient update to model parameters (shown in

Equation 4.4), Reptile and Algorithm 2 use k gradient updates for each decoding task.

Algorithm 2: Training with Meta-Learning (Reptile) in UDA.

Input: E (the encoder), {D1,D2, ...,Dt} (list of decoders), {τ1, τ2, ..., τt} (list of

decoding tasks), k (number of inner steps), α (learning rate for inner model

update) β (learning rate for outer encoder update)

while Not Done do

τi ∼ p(τ) ; // Randomly sample a task

Di ← decoder for task τi ; // Fetch the corresponding decoder

Ẽ ← E ; // Get a temporary deep copy of encoder

for step ∈ [1, 2, ..., k] do

x, y ∼ S ; // Sample data (and labels) from the source datasets

LTi ← Loss(Ẽ ,Di|x, y) ; // Calculate the loss

Ẽ ← Update(LTi , Ẽ , α) ; // Update the temporary encoder

Di ← Update(L,Di, α) ; // Update i-th decoder with learning rate α

end

E ← E + β(Ẽ − E) ; // Update the actual encoder with learning rate α

end

Fine-tune E ,Dtgt for target task τtgt ∈ p(τ) ; // Fine-tune for the target task

Note that the inner loop in Algorithm 2 can be parallelized and performed distributedly

on different machines or data centers (e.g., hospitals and universities), which can preserve

privacy and enable federated learning. Chapter 9 will discuss the privacy issues.
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4.4.3 Analyses

Understanding the theoretical convergence of optimization algorithms can facilitate machine

learning development, but modern mathematical tools are not powerful enough to analyze

complex neural networks. Many questions are still unanswered even for simple supervised

image classification tasks [7]. Some recent literature analyzed multi-task learning and meta-

learning algorithms by imposing unrealistic assumptions (e.g., smoothness, Lipschitz conti-

nuity, bounds of loss functions, and bounds of data variances) about the dataset and tasks,

which usually do not hold in low-resource settings. So, we only briefly discuss intuitions

and rationalities behind the UDA. More rigorous analyses on optimization algorithms are

needed in the future when mathematical tools are mature, and we only evaluate the UDA

empirically in this study. We also raise important questions about low-resource adaptation

for future studies in Chapter 9.

Unlike many other studies, the UDA separates models into an encoder and several de-

coders. Parametric decoders can quickly learn a non-linear projection from one latent space

to another manifold. So, the optimal solution for the encoder is a subspace rather than a

single point. For instance, as shown in Figure 4.5, the green region represents the optimal

subspace for decoding task τ1 and the yellow region represents the optimal subspace for de-

coding task τ2; once the encoder reaches the intersection region, both decoders can find a

projection to minimize training losses. In the sense of reaching an optimal space, the UDA

is very similar to transfer learning and foundation methods.

MTL has two drawbacks. First, the MTL loss aims to learn the encoder’s parameters

ϕE as the average of parameters for all decoding tasks, which is not necessarily the best

parameter for adapting the small target dataset (discussed in Section 3). Second, averaging

gradients from all decoding tasks might smooth the learning to zero, as shown in Figure

4.5a. Nevertheless, MTL is highly efficient and can learn from multiple tasks quickly even if

the source datasets are huge. Thus, MTL is usually used to pre-train foundation models by

using abundant training corpus. Because MTL is already widely studied in the literature,
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(a) MTL

ℰ𝑖𝑛𝑖𝑡

ℰ𝑖𝑛𝑖𝑡

(b) Reptile

Figure 4.5: Comparison of the MTL and the Reptile learning algorithms: for task i, the

optimal space for encoder parameters is in E⋆i . So, the overlapped region of the green (task

1) and the yellow (task 2) is the optimal region for the encoder. Dashed lines represent

gradients for each task, and the black dashed line represents the sum of the two gradients.

With the same learning rate, MTL learns more efficiently if the tasks are correlated (as in

the first row), but the encoder might get stuck at a point where the averaged gradient is

close to zero (as in the second row). On the other hand, although it runs slower than MTL,

reptile could escape the local optimum by moving around.

we refer readers to [87] for multi-objective optimization within multi-task learning.

In the meta-learning approach, the encoder is not updated directly with decoding losses,

but it is updated to the direction of ϕ̃− ϕ, where ϕ̃ is trained by SGD and ϕ is the original

model. Despite Algorithm 2 only using first-order gradients for each update, it contains

second-order gradients learning and looking ahead by k steps. Let us denote Gj as the
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gradient at step j during the inner loop optimization (in Algorithm 2), where j ∈ [1, k]. For

simplicity, denote θ as a shorthand for Ẽϕ, the weight for the encoder during the inner loop

optimization, and let θj be the weight after the j-th update. Following conventions in [86]

and expanding Gj with the Taylor theorem, the following equation illustrates the outer-loop

update rule, where O(||θj − θ0||2) is a small irresolvable rounding error.

θ ← θ + β
k∑

j=1

Gj

= θ − αβ
k∑

j=1

(
∇LTi(θ0) +∇2LTi(θj)(θj − θ0) +O(||θj − θ0||2)

)
≈ θ − αβ

k∑
j=1

(
∇LTi(θ0) +∇2LTi(θj)(θj − θ0)

)

When more than one decoding task (corresponds to LTi) is included, Algorithm 2 can

approximate the second-order gradients in Equation 4.7 to find the best initial parameters

for data adaptation. Geometrically, Figure 4.5b shows how the UDA can escape from a local

optimum point, and [86] shows gradient update in detail. From a mathematics perspective,

the second-order optimization provides additional curvature information for the loss function

to adaptively estimate the optimization trajectory [88], which can help models adapt to new

data and tasks more rapidly. Hence, Algorithm 2 can efficiently train a generalizable encoder

E in the outer while loop.

In summary, researchers can choose a suitable optimization algorithm (Algorithm 1 or 2)

based on the nature of the source datasets. When the source datasets contain many samples,

multi-task learning can optimize the encoder quickly; when both the source datasets and the

target dataset are small, the meta-learning method could learn better by avoiding local

optima. Researchers can also combine these two approaches; for instance, the UDA can first

apply the multi-task learning approach to quickly cold start the model and then use the

meta-learning approach to fine-tune the encoder further.
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4.5 Implementation and Engineering Details

While machine learning ideas and theoretical analyses are helpful, putting them together with

an engineering effort is necessary to concretize ideas into real applications. We facilitate other

open-source repositories to augment the scope of the UDA: for instance, Detectron-2 can help

instance segmentation, TensorBoard helps training visualization, and Proto adds support

for the prototypical network. We also included many of our previous study repositories into

UDA: SGIN adds support for L1 regularization, OBF adds functionality for signal processing,

DIOP helps medical imaging analyses.

Data handling, model, learning paradigm, and inference technique are the most critical

parts of machine learning pipelines. We separate these parts into smaller modules for easier

code readability, maintenance, and re-factorization.

4.5.1 Data

All machine learning processes start from data loading and processing. Especially in low-

resource settings where data or labels are small, handling data is the key to training gener-

alizable neural networks. The UDA supports loading, normalizing, and augmenting images,

signals, and structured attributes.

Image: The UDA supports grayscale, RGB, RGBA, and other custom format of images.

Random cropping, jittering, nosing, affine transformation, and flipping can be applied to

augment input images.

Signal: Unlike images, temporal information is hard to extract inside signals. The UDA

supports loading multi-channel signal data. Random offset, scale, rotation, shear, and noise

can augment signal datasets in the UDA.

Structured Data: images, signals, and time-series data are usually unstructured data.

However, many applications can use structured data (e.g., electronic health records and

database optimization features). The UDA supports loading these structured attributes from

SQL, CSV, and Excel files. Random noise and value removing can be applied to augment
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structured data.

Besides these data format and data augmentation methods, other customized features

can also be supported.

4.5.2 Model

Similar to the flexible data handling implementations, model implementation in the UDA

also supports more than ten architectures. Most model architectures inherit from PyTorch

or Torchvision libraries for easier maintenance. The UDA includes ConvNeXt, ResNet,

MobileNet, and other backbones for CNN-based encoders and decoders. While U-Net and

RCNN structures can support segmentation and detection, single-direction and bidirectional

RNNs (RNN, GRU, LSTM) can analyze time-series data. MLP-based and Transformer-

based models are also suitable for all input data types.

4.5.3 Learning

Learning paradigms can connect data handling and model architecture in the development

thread. Each learning paradigm is associated with each decoder mentioned in Section 4.2.

While PyTorch includes implementations for standard classification and regression learning,

UDA mainly focus on more advanced learning paradigms.

Self-supervised learning: reconstruction decoders Drecon, SimCLR decoders Dsim

are included in the UDA’s self-learning paradigm. These learning paradigms allow neural

networks to learn from unlabelled data, which can alleviate researchers’ annotation burden

when limited resources are available.

Adversarial learning: the mini-max loss in discriminative decoders Ddis and generative

decoders Dgen is the only non-convex loss used in UDA. However, knowledge from other tasks

could help training GANs. Inclusion of skip connections from E to Dgen and the variational

Bayes layer can also help the adversarial learning process.

Meta-learning: prototypical decoders Dproto learns from metrics for meta learning and

metric-based learning. Algorithm 2 can combine all tasks together within the UDA system.
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4.5.4 Inference

While learning paradigms correspond to the development thread, inference tasks are related

to the production thread. Dcls, Dreg, Dseg, Ddet, and other decoders are implemented as

object-oriented classes to produce outputs for users. The confidence estimator fconf runs as

a non-blocking thread to detect drops in confidence and increases of data shifts inside the

production thread.

4.6 Summary

In this chapter, we introduced the UDA framework that unifies different low-resource adapta-

tion scenarios and tasks together. The UDA contains a development thread to train machine

learning models and a production thread to serve end user applications. We modularize

neural networks into a versatile encoder and several tasks-specific decoders, which perform

well in simulations. In the following chapters, we will show how the UDA solves challenging

real-world problems.
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Chapter 5

APPLICATIONS FOR MEDICAL IMAGING

In this chapter, we introduce the first application – classifying breast histopathologi-

cal images [72] with the UDA framework. Pixel-wise labels are usually scarce in medical

images because of high image resolutions and expensive annotation costs. To resolve the

label scarcity issue in this low-resource setting, the UDA absorbs an off-the-shelf semantic

segmentation model as the versatile encoder, requests additional annotation through weak

supervision, creates an instance segmentation pipeline on top of the newly acquired labels,

and performs breast cancer classification with extracted features.

Suggestions from doctors and clinicians are often helpful while developing automated

cancer diagnostic tools. In this medical imaging application, we integrated experts’ domain

knowledge with the UDA system, where we acquired additional labels to adapt complex

breast biopsies with only 100 labeled images. This application shows the flexibility of using

the UDA for expert-machine collaboration.

5.1 Dilemmas in Breast Cancer

Breast cancer is one of the most common cancers for females: about 13% of women will

develop breast cancer over their lifetimes, and 2.6% of women will die from breast cancer

in the United States [89]. The recent development of computer vision screening tools for

mammography [90] could reduce the second reader’s workload, but diagnosing breast cancer

is still a time-consuming and challenging task. Physicians usually recommend breast biopsies

for diagnosis and treatment plans after finding suspicious areas in mammograms, ultrasound,

or magnetic resonance imaging (MRI). Analyzing breast biopsies is essential for breast cancer

diagnosis, but even pathologists only agree with each other in 70% of cases.
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When analyzing breast biopsies, pathologists usually focus on ducts because most breast

cancers begin in the terminal ducts or lobules of the breast [89]. In ductal carcinoma in

situ (DCIS), cells inside ducts undergo malignant transformation to cancer cells; in invasive

breast cancer, these abnormal cells have escaped from the duct and are growing in the

surrounding tissue [89]. Hence, tissues surrounding duct borders are the most relevant regions

for pathologists and machine learning models.

Based on the importance of ductal regions, Mercan et al. designed structure features

[91] to summarize the architectural characteristics in duct-based structures. Their method

can emulate pathologists’ behaviors to interpret diagnostic decisions and has been shown

to outperform pathologists on the difficult task of categorically differentiating DCIS from

Atypia. They identified duct instances (i.e., all pixels inside an individual breast duct or

lobule) by applying a union-find algorithm to split semantic segmentation predictions of

specific tissue classes into smaller duct regions. However, many ducts entangle with each

other in breast biopsies, and this approach cannot distinguish a duct instance that is adjacent

to other ducts, as shown in Figure 5.1. Moreover, extracting their structure features from

biopsies can take hours on a computer because this algorithm is not suitable for parallel

processing on multiple computer cores. Tissue-level semantic segmentation labels are also

expensive and hard to acquire. To create an interactive and real-time tool for clinical use,

researchers need to improve the accuracy and reduce the computation time by adapting to

the limited amount of biopsies and labels.

On the other hand, many research groups have designed end-to-end deep learning systems

to classify breast histopathology images, including fully-convolutional networks (FCNs) [92],

patch-to-ROI-level feature representation [93], and graph convolutional networks [94]. Mehta

et al. also designed Y-Net [95], which can perform image segmentation and diagnostic

classification at the same time. These systems are usually accurate and fast because of

the recent advancement of Graphical Processing Units (GPUs) and parallelism for matrix

manipulation. Nevertheless, due to the lack of ductal labels, these methods are somewhat

blind to the underlying pathological and structural features that led to the clinical diagnosis.
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They do not guarantee a focus on ductal regions and cannot offer a decisive interpretation as

[91] does for pathologists. Even if the training data is limited, knowing why a deep learning

algorithm makes a certain diagnostic decision is crucial in clinical practice.

While researchers often have to balance the trade-offs between human labeling time,

computation speed, accuracy, and interpretability within these computer-aided diagnoses

(CAD) tools, label scarcity is the leading cause of these dilemmas. Acquiring pixel-level

annotation for breast biopsies costs a vast amount of experts’ time, and labeling all biopsies

is impractical in a real-world scenario. As a typical low-resource learning scenario, the lack of

labels hindered the deployment of deep learning models to solve medical imaging problems.

Hence, we bring the UDA framework to help mitigate this dilemma. Without any instance

segmentation labels in the breast biopsy dataset, we adapt the UDA with weakly-supervised

annotation to acquire additional labels based on the previously trained versatile encoder and

semantic segmentation decoder.

In this study, we applied the UDA to identify individual duct structures in breast biopsies,

extract features, and classify breast cancer diagnoses. By adding an instance segmentation

model in the development thread, the UDA can request additional weakly-supervised labels

from human annotators. The proposed pipeline improves upon previous approaches on all

diagnosis tasks, outperforms general human pathologists in two out of three binary classi-

fication tasks, and achieves comparable performance to general pathologists in a four-way

diagnostic classification task, distinguishing among Benign, Atypia, Ductal Carcinoma in

Situ, and Invasive Cancer category examples.

5.2 Related CAD Studies

Recent developments in breast cancer assessment, semantic segmentation, instance segmen-

tation, and weakly supervised learning for medical imaging provide the groundwork for our

study. Semantic segmentation is a common task in medical imaging; it partitions an image

into multiple tissues, grades, or classes by classifying each pixel inside the image. For ex-

ample, LSBB [96], Y-Net [95], and ESPNet [97] were designed for breast biopsy semantic
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segmentation; multi-scale U-Net [98], vanilla FCNs [99], EM-based models [100], and at-

tention models [101] were created for prostate cancer; specialized auto-encoder [102], FCNs

[103], and U-Net [104] were used for melanoma segmentation tasks. Unfortunately, these

methods could not identify duct instances inside a region of interest (ROI) because seman-

tic segmentation could not differentiate these instances from the semantic labels. Instead,

instance segmentation labels, which contain all pixels within each breast duct or lobule, are

needed.

While semantic segmentation has been widely applied to cancer diagnosis, instance seg-

mentation is rarely used. Li et al. designed Path R-CNN (regions with convolutional neural

network features) [105] based on Mask R-CNN [106] to classify glands and grade prostate

cancer, which pioneered instance segmentation for medical imaging. In the recent two years,

instance segmentation for nuclei [107], cluttered cells [108], polyps [109], and other tissues

have been developed. In breast biopsies, each duct might contain different structural informa-

tion about tissues, which could not be provided by tissue-level semantic segmentation. Hence,

performing instance segmentation for ducts could be valuable for classifying histopathology

images.

Acquiring instance segmentation labels for ducts is a tedious and time-consuming process,

and no public datasets are available for instance segmentation on ducts to the best of our

knowledge. For images with simple structures, semantic segmentation labels can be easily

converted to instance segmentation labels using union-find, connected components, or other

rule-based algorithms. Unfortunately, ducts inside breast biopsies are too complex for these

rule-based label conversion algorithms, and instance annotations are needed to train an

instance segmenter.

Geometrically, the shape of a duct is similar to the shape of a “doughnut”: it is usually

ring-shaped with a thick circular border and central space, but often it does not have any

holes because microscopic histopathology images are two-dimensional cross sections through

three-dimensional structures. Breast ducts are analogous to pipes or tubes, and breast

lobules are analogous to a hollow ball such as a tennis ball. Pre-cancerous conditions can
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(a) ROI image (b) Binary (c) Previous (d) Ours

Figure 5.1: Duct instances: (a) the input ROI image in RGB color space; (b) the binary

image inferred from tissue-level semantic segmentation, where the white pixels are ducts;

(c) duct instances found by mathematical morphology and connected component algorithm;

(d) the ducts inferred from our system. In (c) and (d), each color represents one duct

instance. The connected component method (c) could not distinguish duct instance from

the conglomerated region, even if it has been used to solve similar problems (e.g., in [91,

112]).

also cause the lining of the ducts and lobules to proliferate and fill the holes. All these

features complicate rule-based algorithms. The difficulties compound when many ducts are

adjacent to each other so that the borders of these ducts are difficult to distinguish. In DCIS

and invasive cases, cancerous cells first begin to distort then escape from ducts, respectively,

and thus duct cross sections develop into various and complex shapes.

Recent studies show that weak annotation [110], imperfect annotation [55], active learn-

ing, and human-in-the-loop methods [111] can be used to alleviate this problem. These

methods encouraged us to design an efficient annotation plan to find ducts inside breast

biopsies.
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Figure 5.2: Ductal Instance-oriented Pipeline: this pipeline leverages existing versatile en-

coder, tissue-level semantic segmentation decoder, duct-level instance segmentation decoder,

features extraction functions, and a classifier for diagnosis. The feature extractors calculate

the tissue histogram frequency and co-occurrence matrix for ROI, box, and mask levels.

5.3 System for Breast Cancer Diagnosis

Several clinical studies have shown that stromal tissues and ducts are essential biomarkers

for diagnosing breast cancer [89, 113]. Motivated by these studies, we apply UDA and create

a machine learning-based framework that accounts for these important biomarkers in cancer

diagnosis.

Based on the UDA framework, our system consists of three components: (1) a tissue-level

semantic segmentation model with a versatile encoder and a segmentation decoder (Section

5.3.1), (2) a duct-level instance segmentation model (Section 5.3.2), and (3) a classifier with

three-levels of extracted features (Section 5.3.3). The input ROI is fed to both duct-level and

tissue-level segmentation modules simultaneously to produce instances of ducts and tissue-

level segmentation masks. Histogram frequency and co-occurrence features are extracted

at three levels: the duct, the bounding boxes, and the entire region of interest to predict

the diagnosis. Our experimental results show that the proposed framework outperforms the
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previous state-of-the-art methods and matches pathologists’ performance.

5.3.1 Semantic segmentation

An off-the-shelf segmentation network [96] is applied to generate tissue-level semantic seg-

mentation. Similar to autoencoder structures mentioned in Chapter 4, this network contains

an encoder (with multiple resolutions) and a segmentation decoder. The UDA framework

absorbs the trained encoder in [96] as the versatile encoder in the diagnostic pipeline; then,

it acquires instance-level annotation and creates a duct-level instance segmentation based on

the segmentation network.

5.3.2 Duct-level instance segmentation

The instance segmentation network adopts the same structure as Mask R-CNN [106] and

Path R-CNN [105]. The network consists of two stages. The first stage takes an ROI as

input and produces duct candidates. In the second stage, these candidates are classified as

duct or not. In addition to this classification, the second stage also produces bounding box

coordinates and a pixel-wise mask of the duct.

To reuse the same architecture from our collaborators in [105], we did not utilize the

versatile encoder directly for the instance segmentation task. However, the encoder implicitly

impacted the instance segmentation task, because it participated in the weakly-supervised

annotation in the paragraph below. Future researchers can redirect the data flow from the

versatile encoder to the feature pyramid network and the region proposal network in the

R-CNN structure for a more straightforward design.

Ductal regions are essential biomarkers in diagnosing breast cancer. However, collecting

duct-level instance segmentation masks is difficult because pathologists must annotate the

instances. We created a weakly supervised annotation tool to collect duct-level instance

segmentation masks. Figure B.1 shows our annotation tool in the Appendix. We first run

the UDA to perform semantic segmentation on ROI images in breast cancer biopsies. Benign

epithelium (BE), malignant epithelium (ME), secretion (SC), and necrosis (NC) are tissues
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that surround ducts. Therefore, the UDA created binary masks by assigning pixels in these

tissues as foreground with the remaining pixels as background, as shown in Figure 5.1b.

These masks were then combined with the bounding box annotations1 to produce duct-level

instance segmentations. Overall, 4,347 duct instances were marked in 100 ROIs. Note that

one bounding box might contain pixels from several ducts, and this annotation strategy can

still mistakenly mark pixels from other ducts to the main duct in the bounding box. So, our

annotations are only “silver standard” rather than “ground truth” because they are inexact.

5.3.3 Feature Extraction and Classification

Creating a classification decoder for the UDA is the last step for this diagnostic classification

pipeline. Several methods (e.g., histogram features, co-occurrence features, and structural

features) can extract features from tissue-level segmentation masks. Features from super-

pixels (regions of similar color in an area) contain encoded information about tissues (e.g.,

stromal tissue) and structures (e.g., ducts) present in biopsy images, which can improve the

diagnostic classification compared to multi-instance learning-based methods [93]. Histogram

frequency features can convey the distribution of tissues in an image, and the co-occurrence

features can encode uncomplicated spatial relationships. With extracted frequencies from

five layers inside and five layers outside of a duct instance, the structure features can capture

the changes in the shape of the epithelial structures.

Though the structure features used in [91] would allow capturing architectural informa-

tion around the ducts, they are computationally expensive as compared to the histogram

and co-occurrence features. While computing structure features takes over an hour for each

image, computing the proposed features takes only one second. The proposed method lever-

ages the duct-, box-, and tissue-level information based on tissue histogram frequency and

co-occurrence frequency. This design allows us to replace these computationally expensive

features with simple features at three levels. These features are then fed to a classification

1The bounding boxes around ducts were marked by Beibin Li under the supervision of an expert pathol-
ogist, Stevan Knezevich.
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network (e.g., a random forest or a multi-layer perceptron) to predict the diagnostic category.

The ability of our system to aggregate clinically relevant information at different levels allows

our framework to outperform existing methods by a significant margin (Section 5.4.4).

5.4 Experiments and Results

5.4.1 Dataset

Diagnostic labels: The Ductal Instance-Oriented Pipeline was developed by using digital

whole slide images created from residual breast biopsy material [114, 115, 116]. The dataset

consists of 428 ROI images, which were extracted from 240 breast biopsies and categorized

by three expert pathologists, who selected the ROIs for each whole slide image and agreed on

a consensus diagnosis for each slide. Similar to many previous studies on this dataset [95, 91,

117], we performed diagnosis classification for each of the 428 ROIs into 4 classes: Benign,

Atypia, Ductal Carcinoma in Situ, or Invasive Cancer. The dataset is unique and is enriched

with additional cases in the challenging Atypia and DCIS categories to establish statistical

confidence in accuracy predictions for categorical classification. The enriched image dataset

provides additional ROI input data on lower prevalence disease categories for developing the

deep learning pipeline. The comparison of participants’ diagnoses performance with expert

pathologists was previously reported [118].

Tissue-level semantic annotations: The dataset also provides pixel-wise tissue-level la-

bels for 58 ROIs. An expert pathologist annotated these ROIs into eight tissue classes:

background (BG), benign epithelium (BE), malignant epithelium (ME), normal stroma (NS),

desmoplastic stroma (DS), secretion (SC), blood (BL), and necrosis (NC). These ROIs were

used to train a tissue-level segmentation model. See [96] for more details.

5.4.2 Implementation details

Duct-level instance segmentation decoder: In the development thread of the UDA,

we fine-tuned Mask R-CNN [120] (pretrained on the MS-COCO dataset) with ResNet-50
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Task Features Sensitivity Specificity Accuracy F1

Invasive vs Non-invasive

Pathologists [118] 0.84 0.99 0.98 0.86

Superpixel Features [91] 0.70 0.95 0.94 0.62

Structure Features [91] 0.49 0.96 0.91 0.51

Ours 0.62 0.98 0.95 0.73

Atypia and DCIS vs Benign

Pathologists 0.72 0.62 0.81 0.51

Superpixel Features 0.79 0.41 0.70 0.46

Structure Features 0.85 0.45 0.70 0.50

Ours 0.85 0.63 0.79 0.59

DCIS vs Atypia

Pathologists 0.70 0.82 0.80 0.76

Superpixel Features 0.88 0.78 0.83 0.86

Structure Features 0.89 0.80 0.85 0.87

Ours 0.91 0.89 0.90 0.92

Table 5.1: Diagnosis results for binary classification: we show sensitivity, specificity,

accuracy, and F1 score for all models. We highlight the best machine performances in this

table, and pathologists’ performances are provided for comparison. The results for superpixel

features and structure features are from [119, 91], where the standard deviations (STD) are

not reported.

as a backbone network for 30 epochs using SGD with an initial learning rate of 0.01 and

a momentum of 0.9. We used duct-level instance segmentation masks produced using our

weakly-supervised annotation tool for fine-tuning Mask R-CNN. Compared to cellular enti-

ties, ductal regions are larger to detect with lower resolution images. Therefore, we resized all

ROI images to a fixed spatial dimension of 512×512. We split the dataset into an 80:20 ratio:

80 ROIs for training and 20 for validation. On the validation set, Mask R-CNN achieved a

mean intersection over union (mIOU) of 72% and a mean average precision (mAP) of 32%.

Figure B.2 in the Appendix visualizes duct-level instance segmentation masks produced by
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Mask R-CNN.

Tissue-level semantic segmentation decoder: Ductal regions can be identified at lower

image resolutions, because the shape and texture can help recognition. However, tissue-

level segmentation methods do not perform well at lower resolutions, because low-resolution

images may lose information about cellular entities, which help differentiate between different

tissues. Similar to [91], the UDA applied the semantic segmentation method [96] to produce

tissue-level semantic masks at x40 magnification.

Diagnostic classification decoder: we tried a random forest model, a 3-degree polynomial

support vector machine (SVM), an SVM with radial basis function (RBF) kernel, and a

multi-layer perceptron (MLP) with four hidden layers (256, 128, 64, and 32 neurons for each

layer, similar to [95]) for comparison.

5.4.3 Classification methods

Diagnostic classification tasks and baseline methods are introduced below. We run each

experiment 100 times and report the mean performance.

Binary classification: Emulating the successive decisions made by pathologists, [91] per-

formed three binary classification tasks (i.e. invasive v.s. non-invasive, atypia & DCIS v.s.

benign, and DCIS v.s. atypia) in their studies. We performed similar experiments, using

leave-one-out cross-validation to evaluate each binary classification model. If the number of

features was more than the number of ROIs in a classification task, we performed principal

components analysis (PCA) to reduce the number of features to 20 dimensions. We applied

a weighted random sampling approach to sampling balanced positive and negative samples

before training these binary classifiers.

Multi-class classification: We also conducted a 4-way classification experiment to compare

our results with previous studies [95, 93]. We used the same training/validation/testing split

as Y-Net [95], an extension of U-net with a separate branch for diagnostic classification;

their discriminative masks improved classification accuracy by 7% over previous feature-
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engineering methods. On the other hand, a multi-instance learning method [93], analyzing

extracted features from a CNN instead of tissue-level semantic information, outperformed

previous methods. We will compare the proposed method with these baseline methods.

5.4.4 Main Results

Binary classification: Table 5.1 compares the performance of our method with the super-

pixel and structural features [91] in terms of sensitivity, specificity, accuracy, and F1 score.

Overall, our method outperforms both methods in all binary classification tasks. We observe

that the super-pixel-feature-based method delivers the best performance for the invasive

vs. non-invasive task. This is because cancer cells spread out from the ducts in invasive

cancer (as shown in Figure B.2h). This limits both our method and the structure-feature-

based method to aggregate information around ducts, resulting in lower performance. In

contrast, the super-pixel-feature-based method only accounts for pixel-level information and

not structure-level information. Therefore, such methods are resilient to structural changes.

Multi-class classification: Table 5.2 compares 4-way classification performance of our

method with state-of-the-art methods. Compared to these methods, our method delivers

significantly better performance. For example, our method is about 7% and 3% more accu-

rate than Y-Net and the multiple instance learning (MIL)-based method. Importantly, our

method matches the performance of pathologists on this dataset. These results indicate the

applicability of the UDA framework to adapt partially labeled medical imaging datasets.

5.4.5 Ablations

To understand the components of UDA in detail, we perform the following experiments:

Impact of duct-level instance segmentation and tissue-level semantic segmen-

tation: Following [119], we extracted L*a*b, hematoxylin and eosin (H&E), and local bi-

nary pattern (LBP) histogram features for the duct-only method. For the other two methods

(tissue-only and tissue+duct), we extracted histogram and co-occurrence tissue-level features
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Method Accuracy

Pathologists [118] 0.70

MIL with max-pooling [121] 0.55

MIL with learned fusion [93] 0.67

Semantic Learning [96] 0.55

Y-Net [95] 0.63

UDA (Ours) 0.70 ± 0.02

Table 5.2: Multi-class classification results on the breast biopsy dataset. Our model out-

performs existing methods by a significant margin and also, matches the performance of

pathologists.

(similar to [95, 96]). Table 5.3 shows that the method that uses both duct- and tissue-level

information delivers the best performance.

Ducts Tissue Accuracy

✓ 0.57

✓ 0.67

✓ ✓ 0.70

Table 5.3: Impact of duct-level instance segmentation and tissue-level semantic segmentation.

Impact of different features: By aggregating the information about different structures

present in the breast biopsy images, previous methods have proposed different features,

namely structure features, histogram features, and co-occurrence features. Table 5.4 com-

pares the performance of our method with these different features. Using both histogram
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and co-occurrence features delivers the best performance. Our method performs well with

co-occurrence features alone because the co-occurrence matrix encodes strong relationships

between different tissues.

Histogram Co-occurrence Accuracy

✓ 0.66

✓ 0.69

✓ ✓ 0.70

Table 5.4: This table studies the impact of different features extracted from duct-level and

tissue-level masks (Section 5.3.3). We did not use superpixel and structural features [119],

because (1) they are computationally expensive and (2) our method delivers better perfor-

mance with these simple features (0.70 vs. 0.66).

Impact of extracting features from different levels: Our framework in Section 5.3

encodes information from three different levels: (1) tissue-level segmentation mask for the

whole image, (2) tissue-level mask for duct bounding boxes and (3) tissue-level mask for duct

instances. Table 5.5 shows that extracted features from all levels help improve performance.

Impact of classifiers: We study the impact of different classifiers in Table 5.6. Compared

to widely used MLP and SVM, the random forest delivered the best performance. This is

likely because random forests reduce high-variance by ensembling many trees into one model.

This reduces over-fitting and improves performance, especially on small datasets (like ours).

5.5 Discussion

Interpretation: While parameters inside a random forest can be hard to understand, we

adapted SHAP [122], a game theory-based approach, for interpretation. After training our

diagnosis model, we applied SHAP to interpret the diagnostic decision for each ROI and

search for the most important features among all ROIs. Table 5.7 compares the 10 most
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Method Accuracy

Tissue in ROI 0.67

Tissue in Duct box 0.66

Tissue in Duct mask 0.69

Tissue in Duct mask + ROI 0.69

Tissue in Duct box + ROI 0.67

Tissue in Duct box + mask 0.69

Tissue (All) 0.70

Table 5.5: Impact of extracting features from different levels (segmentation ROI mask, duct

mask, and duct boxes).

important features from the UDA and from the tissue-level machine learning model (with

0.67 accuracy) in the ablation experiments.

The BD (boundary of ducts) values in co-occurrence features occur when a pixel is adja-

cent to the border of a mask or bounding box, which matches the boundary of duct tissues.

The UDA identifies two co-occurrence features related to BD as essential features, which is

consistent with the intuition of structure features. Even if the tissue-level model can identify

similar co-occurrence features, it is unable to use information inside ductal regions; on the

other hand, the UDA primarily focuses on duct masks and also bounding boxes, and it only

ranks one ROI-level feature among the top-10 most essential features. More clinical studies

are needed to verify the consistency of our interpretations with pathologists in the future.

Diagnosis: The UDA outperforms existing end-to-end and feature engineering ap-

proaches. For the four-way classification task, the UDA achieves comparable performance

to general pathologists. In Section 5.4.4, the general pathologists’ diagnostic accuracy is

70% for this unique dataset, which over-sampled DCIS and Atypia cases. In the real-world

setting, pathologists diagnosing accuracy is over 92% [123].
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Method Accuracy

SVM (polynomial) 0.62

SVM (RBF-kernel) 0.65

MLP 0.66

Random Forest (UDA) 0.70

Table 5.6: Impact of different classification algorithms.

Limitation: Note that our dataset contains only 240 biopsies, and additional studies are

needed to examine our method thoroughly. With future improvement in semantic segmen-

tation and instance segmentation approaches, our system has the potential to achieve higher

accuracy. In this study, we explored clinically relevant features for cancer diagnosis, but we

used two separate networks for duct-level and tissue-level segmentation; in the future, the

UDA framework can combine them by directing data flows from the versatile encoder to the

feature pyramid network in the R-CNN decoder.

Human-Machine Collaboration: In this study, machine-generated semantic segmen-

tation masks helped the annotator understand breast biopsies and perform manageable an-

notation tasks. These annotations were then used to train instance segmentation models

for diagnosis purposes. More comprehensive studies, such as controlled and counterbalanced

human factor experiments, are needed to investigate the effectiveness of this human-in-the-

loop design and other types of human-machine interaction, such as educating pathologist

trainees.

Future directions: Many questions need to be answered before deploying these CAD

systems, for example: the generalizability to different datasets, the interpretability of models,

the robustness of application to diverse images sets, and the vulnerability to noise and

adversarial attacks. Abnormal breast histopathology and breast cancer are complex and

heterogeneous disease processes that still require human experts to supervise the critical
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Rank UDA (ours) Tissue-level model

1 BD & BE in duct mask ME & NC in ROI

2 ME & NC in duct mask BG & NC in ROI

3 BD & NC in duct mask SC freq in ROI

4 BE & NS in bounding box BE freq in ROI

5 BG & NC in duct mask BE & SC in ROI

6 BE & SC in ROI ME & NS in ROI

7 ME & SC in bounding box BE & NS in ROI

8 NC freq in bounding box NC freq in ROI

9 BE & SC in bounding box NS & NC in ROI

10 DS freq in duct mask SC & NC in ROI

Table 5.7: The top-10 important features from SHAP interpretation. Left: results from

the Ductal Instance-oriented Pipeline (UDA). Right: results from the classifier for tissue-

level semantic features (aka ROI-level features). Background (BG), benign epithelium (BE),

malignant epithelium (ME), normal stroma (NS), desmoplastic stroma (DS), secretion (SC),

blood (BL), necrosis (NC). and boundary of ducts (BD) are included for this interpretability

analyses.

diagnostic decision process.

5.6 Summary

In this chapter, we applied the UDA, which contains a duct-level instance segmentation

decoder, a tissue-level semantic segmentation decoder, three levels of pixel-wise features,

and a diagnostic classification decoder, for breast pathology and cancer diagnosis. To train

the unique instance-level segmentation model, we adapted weak annotation and human-in-

the-loop design to acquire training data with the UDA. The proposed method outperforms
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previous computer-aided approaches in all diagnostic tasks. It also outperforms general

pathologists in 2 out of 3 binary classification tasks and almost matches their overall per-

formance on our unique dataset. The medical application in this chapter only learns from

a single breast cancer dataset; we will show how the UDA can adapt from several large

datasets in its development thread in the following chapter.
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Chapter 6

APPLICATIONS FOR FACIAL EXPRESSION RECOGNITION

The previous medical imaging application utilizes several segmentation decoders in the

UDA for diagnostic classification, and this chapter combines regression and classification

decoders for autism spectrum disorder (ASD) classification [69]. While researchers have

collected several public datasets for affective computing in adults, only a few studies have

examined the adaptation of adults’ models to children. After collecting data from an iPad

application, we utilize UDA and explore the data adaptation quality for children with autism.

During our experiments, informed consent was obtained from parents of all children,

and all study procedures were designed in accordance with the World Medical Association

Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects

as well as in compliance with HIPAA1 to preserve privacy. The Institutional Review Boards

approved these studies of Yale University, Seattle Children’s Research Institute, and the

University of Washington.

6.1 Autism and Facial Expression

Autism spectrum disorder (ASD) is a neurodevelopment disorder that affects the social

communication and behavior of children [124, 125]. According to the Centers for Disease

Control and Prevention, one out of 59 children is diagnosed with ASD in the United States2.

Diagnosing ASD can be difficult because (1) the type and severity of symptoms have a wide

spectrum, and (2) the behavior of children with autism is dependent on non-autism-specific

factors such as cognitive functioning and age [126]. Facial attributes including expressions

1Health Insurance Portability and Accountability Act

2https://www.cdc.gov/ncbddd/autism/data.html

https://www.cdc.gov/ncbddd/autism/data.html
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have been suggested as effective markers in autism-related clinical studies [124, 125, 127,

128].

Convolutional neural networks (CNNs) produce state-of-the-art results for recognizing

different facial attributes (e.g., expressions, gender, and action units (AUs)) in the wild [129,

130, 112, 131, 132]. The high accuracy achieved in these recognition tasks can be attributed

to large-scale labeled datasets, such as AffectNet [129] and EmotioNet [132], that enable

CNNs to learn rich and generalizable representations. However, datasets at such scale do

not exist for ASD, making it difficult to apply CNNs directly in the autism field.

In this chapter, we apply the UDA for ASD classification using facial attributes. Along

with two widely used categorical facial attributes (facial expressions and AUs) for natural

images, our system also predicts two continuous facial affect attributes (arousal and valence)

that are effective in previous autism-related clinical studies [133]. For simplicity, we use

facial attributes to represent facial expression, AUs, arousal, and valence. Since there are

no publicly available datasets for autism with all of these different attributes, we learn

representations for these attributes by leveraging two large-scale facial datasets of natural

images that are collected in a wide variety of settings, including age, gender, race, pose,

and lighting variations. The contributions of this experiment are (1) describing an ASD

classification system based on the UDA framework and facial attributes, (2) showing the

importance of these facial attributes in improving the performance of our system through

statistical analysis, and (3) analyzing single vs. multi-task learning (of the UDA) for facial

attribute recognition.

6.2 Related Works in Affective Computing

Facial attribute recognition: With recently curated, large-scale datasets [129, 132, 134,

135, 136, 137], it has become possible to train CNNs for facial attribute recognition. These

networks can learn facial representations either independently or simultaneously [130, 138,

139]. Most existing datasets contain annotations for one or two facial attributes. In this

experiment, we combine two large-scale datasets [129, 132] and train a model to produce
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four facial attributes simultaneously for ASD classification.

Versatile
Encoder

Affective Decoders Diagnostic Classification
Decoder

Figure 6.1: Overview of the UDA system for autism spectrum disorder (ASD) classification

using facial attributes.

Facial attributes for autism: Various clinical studies have shown that facial attributes, in-

cluding expressions [124, 125], emotions [127], and morphological features [128], are effective

markers for autism. With recent developments in technology, including sensors and artificial

intelligence, affective computing is gaining interest in the autism community. Egger et al.

[140] use head orientation and expression to study autism-related behavior. Rudovic et al.

[133] use facial landmarks and body pose along with captured audio and bio-signals for an

automatic perception of children’s affective state and engagement. We use representations

of different facial attributes for ASD classification in this chapter.

6.3 UDA for Affective Computing and ASD Classification

As shown in Figure 6.1, our framework takes a video as an input and uses a CNN to extract

four facial attributes per frame: facial expressions, AUs, arousal, and valence on the face3. We

created another diagnostic classification decoder to classify children with and without ASD.

Outputs corresponding to four facial attributes are concatenated to form a k-dimensional

3We use an HoG-based face detector on its excellent trade-off between speed and accuracy on an iPad.
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feature vector per frame, represented as f t = {f t
au,f

t
expr, f

t
aro, f

t
val} ∈ Rk where fau ∈ Rn

and fexpr ∈ Rm are feature vectors corresponding to n AUs and m expressions available in

the dataset, while faro and fval are scalar values between -1 and 1 that correspond to arousal

and valence, respectively. We apply temporal feature extraction methods on each vector

f t ∈ Rk to extract a single lower-dimensional temporal feature vector f̂ ∈ Rl per video.

Each temporal feature vector f̂ is fed to a binary classifier for ASD prediction.

Facial attribute recognition: we are interested in ASD classification. However, no large

publicly available datasets provide annotated videos with facial attributes as labels for ASD.

Therefore, we use publicly available large-scale datasets that provide some facial attributes

for natural images in the wild. We use these datasets to train a CNN-based model that

simultaneously predicts different facial attributes. Our network is a standard CNN that

learns spatial representations by stacking convolution and down-sampling units, as shown

in Table 6.1. Following the previously discussed Equation 4.1 and Algorithm 1, we use the

multi-task learning strategy for this affective facial attributes analysis, because abundant

pre-training data already exist in publicly available datasets.

ASD classification: After training our model on the publicly available facial datasets, we

generate a k-dimensional feature vector f t for each frame in the participant video by feeding

the video into our trained CNN-model frame by frame. These vectors are concatenated

to form a feature matrix F ∈ RM×k per video, where M denotes the total number of

frames in the video. Due to the temporal nature of the data, there may be redundancies

in the feature matrix F that could hinder the analysis of the differences between ASD and

non-ASD participants. Therefore, we project this high-dimensional feature matrix F to an

l-dimensional vector f̂ ∈ Rl using temporal analysis methods. In particular, we compute a

mean vector m ∈ Rk and a standard deviation vector σ ∈ Rk that contain the mean and

standard deviation values across our k features.

In addition, we compute an activation vector a ∈ Rn that captures the mean activation

time per action unit because of its significance in interpretability. We define a as: a(i) =
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1

M

M∑
t=0

1f t
au(i)>τ where 1 is an indicator function and τ is a threshold. We use τ = 0.5 in our

experiments.

Similarly, because it has been shown that the percentages of positive arousal paro and

positive valence pval frames are meaningful for autism related studies [140, 133], we also

compute these features. We concatenate the vectors and scalars obtained after temporal

analysis to produce l-dimensional feature vector f̂ = {m,σ,a, paro, pval}. We feed f̂ to a

Layer/
Repeat

Output

Stride Size Channels

Versatile Encoder

Conv-3/2 1 112× 112 32

CU/2 1 56× 56 32

CU/1 1 56× 56 32

CU/2 1 28× 28 64

CU 3 28× 28 64

CU/2 1 14× 14 128

CU 7 14× 14 128

CU/2 1 7× 7 256

CU/1 3 7× 7 256

DWConv-3/1 1 7× 7 512

Avg. pool 1× 1 512

Decoders Linear ×4 Dexpr,Dau,Dval,Daro

Table 6.1: Overview of the CNN-based UDA architecture. In the four decoders, four linear

layers are used as last layer in parallel: Dexpr for expressions, Dau for action units, Daro for

the arousal value, and Dval for the valence value. We note that Daro and Dval are between -1

and 1. Here, Conv-3 and DWConv-3 represent 3× 3 standard and depth-wise convolutional

layers, and CU represents convolutional unit. We use three different CUs (BottleNeck [120],

MobileNet [141], and EESP [142]) in our experiment.
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binary classifier to predict if the participant is affected by ASD or not.

6.4 Experiments and Results

We first study the performance of our system on facial attribute recognition on different

facial datasets. We then study the impact of each facial attribute on ASD classification

along with their statistical significance.

6.4.1 Facial attribute recognition

Dataset: Most of the existing datasets provide annotations for one or two facial attributes.

To train a network with all four facial attributes (expressions, AUs, arousal, and valence), we

combine two publicly available datasets: (1) AffectNet [129] and (2) EmotioNet [132]. The

resulting dataset contains about 1.2 million samples. For AffectNet, we split the training set

into two subsets: training (285K) and validation (2.4K). Following [130], we use AffectNet’s

validation set as the test set (5.5K). For EmotioNet, we split the training set into three

subsets: training (754K), validation (63K), and testing (126K).

Training details: We train the UDA for a total of 30 epochs using Stochastic Gradient

Descent with a momentum of 0.9 and an initial learning rate of 0.01. We decrease the learn-

ing rate by 5% after every epoch for faster convergence. Annotations for facial attributes

are different: some are continuous (arousal and valence), and some are discrete (AUs and

expressions). Therefore, we use task-specific loss functions to learn representations for dif-

ferent facial attributes. In particular, we minimize cross-entropy loss for expression, binary

cross-entropy loss for AUs, and the sum of L1 and L2 loss for arousal and valence, respec-

tively. The multi-task learning follows Algorithm 1. We also use a weighted cross-entropy

loss to address the class imbalance for each loss function. We use standard data augmenta-

tion strategies such as random flipping, cropping, rotation, and shearing while training our

models.

Results: We use CNN-based versatile encoders in the UDA to predict facial attributes for

a given input image in both single-task and multi-task settings. In the single-task set-up,
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the input image was fed to four different CNNs, where each CNN predicts a different facial

attribute. In the multi-task set-up, as mentioned in previous chapters, the input image was

fed to a single CNN that predicts all facial attributes at once. Researchers have proposed

different CNN units (e.g., bottleneck block in ResNet [120]) in recent years to learn richer

representations. To find a suitable trade-off between accuracy and a network’s complexity,

we study three different convolutional units: (1) the Bottleneck unit [120], (2) the EESP unit

[142], and (3) the MobileNet unit [141]. Following the conventions in the literature, we use

the following metrics to evaluate the performance of our model: (1) an average of F1-score

and accuracy for AUs [132], (2) F1-score for expressions [129], and (3) correlation coefficient

(CC) for arousal and valence [129].

We make the following observations from the results shown in Fig.6.2 : (1) multi-task

learning delivers better performance than single-task learning for all different facial attributes

except AUs. In particular, the multi-task learning-based system outperforms the single-task

learning-based system for arousal by about 8%, and (2) the EESP units deliver similar per-

formance to the Bottleneck, while the MobileNet units are smaller and more efficient in

terms of floating-point operations (FLOPs). The second observation contrasts with other

large-scale datasets, such as the ImageNet, where complex models often deliver better per-

formance. This result suggests that facial expression datasets are not as complex as the

ImageNet, where deeper models (e.g., [120]) would learn redundant parameters without giv-

ing significant performance gains. We note that the recognition performance of our method

is on par with existing CNN-based methods [129, 130].

6.4.2 Application to ASD classification

Dataset: We collected a video dataset of 105 children (ASD: 62 and non-ASD: 43) with one

video per participant using an iPad application; 88 of these children (ASD: 49 and non-ASD:

39) finished the experiment and then consented to use their data for our research. The diag-

nostic labels, ASD or non-ASD, are provided by clinicians based on the neuropsychological

tests, which are done independently of these experiments.



66

CNN Unit # Params FLOPs
Expression AU Valence Arousal

(F1) (mF1Acc) (CC) (CC)

Single-task

Bottleneck 25.9 M 3.4 B 0.56 0.78 0.63 0.54

MobileNet 24.8 M 3.1 B 0.57 0.77 0.64 0.52

EESP 9.7 M 1.2 B 0.57 0.76 0.64 0.52

Multi-task with UDA

Bottleneck 6.5 M 0.85 B 0.58 0.75 0.68 0.61

MobileNet 6.2 M 0.78 B 0.58 0.75 0.68 0.62

EESP 2.4 M 0.29 B 0.58 0.75 0.69 0.61

Literature

SOTA - - 0.58 - 0.66 0.54

Human Performance - - 0.61 * 0.82 0.57

Figure 6.2: Qualitative performance of single and multi-task learning models in UDA. Here,

Expr, AU, Val, Aro, and FLOPs indicate expression, AUs, arousal, valence, and floating

points operations respectively.

Each participant watches an expert-designed video stimulus on an iPad during the exper-

iment. The video stimulus is a compilation of short video clips that simultaneously display

dynamic naturalistic scenes and social communication scenes on screen, as shown in Figure

C.1. These clips are shown simultaneously, side-by-side, on a vertically split iPad screen.

While the participant watches a video, our application captures and records the participant’s

facial response using the iPad’s front camera. The video recorded using the iPad application

is about 6 minutes and 35 seconds (9,575 valid frames) per participant.

Methods: We constructed a 22-dimensional feature vector from four facial attributes pro-

duced by the CNN. The first twelve values in this vector represent the probability of each

action unit, the following eight values represent the probability of each expression, and the
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last two values represent the arousal and valence attributes. The framewise analysis yields

a 9575 × 22-dimensional matrix per participant. We then used temporal analysis methods

(see Section 6.3) to construct a 58-dimensional feature vector per participant4. This feature

vector comprises 44 values of means and standard deviations for each dimension (22 × 2),

12 values representing mean percentage activation time of action units, and two values rep-

resenting the percentage of positive arousal and positive valence. We trained seven binary

classifiers (logistic regression, LASSO, LDA, QDA, SVM with RBF kernel, XGBoost, and

two-hidden-layer neural network (NN)) using these 58-dimensional feature vectors for ASD

classification. Since the dataset is limited, we measured the classification performance (F1

score, sensitivity, and specificity) using leave-one-out cross-validation.

Results: Fig. 6.3a compares the performances of seven ASD classifiers that use representa-

tions from different CNNs. Our system achieved the best F1 score, sensitivity, and specificity

with the Bottleneck as the base feature extractor. We also note that the ASD classification

performance improved by 7% when adding features related to arousal, valence, and facial

expressions. This result is consistent with our statistical analysis (Fig. 6.3c), where we found

these three attributes are the most significant.

6.5 Summary

We applied the UDA for ASD classification using different facial attributes: facial expressions,

AUs, arousal, and valence. The multi-task learning approach in the UDA is more effective

to classify different facial attributes than the single-task approach. We also showed that

representations of different facial attributes used in our experiment are statistically significant

and improve the ASD classification performance by about 7% with an F1 score of 76%.

4Temporal features can also be learned using methods such as RNNs and temporal CNNs. The following
chapter will show some sample strategies
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(a)

Facial attributes
F1 Sensitivity Specificity

AU Aro Val Expr

✓ 0.69 0.69 0.62

✓ ✓ 0.72 0.71 0.67

✓ ✓ ✓ 0.69 0.67 0.67

✓ ✓ ✓ ✓ 0.76 0.76 0.69

(b)

Facial attributes p-value

Action Units (AUs) 0.223

Arousal (Aro) 0.007

Valence (Val) 0.001

Expression (Expr) 0.006

(c)

Figure 6.3: ASD classification results with affective facial attributes: (a) comparison of

different binary classification methods, (b) impact of different facial attributes on the clas-

sification performance with BottleNeck as a CNN unit, and (c) statistical significance using

Student’s t-test of different facial attributes.
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Chapter 7

APPLICATIONS FOR EYE-TRACKING

To create additional tools to help children with autism, we apply the UDA framework

for eye-tracking estimation and attention analyses. Even if collecting eye-tracking data is

straightforward for adults, collecting data from uncompliant children is challenging.

This chapter contains two different experiments. In the first experiment [71], we create a

gaze estimation model where the underlying model takes a facial image as input and predicts

where subjects are looking on the screen; this data collection protocol is similar to the facial

expression experiments in the previous chapter. The second experiment [143] creates a deep

learning model that takes a gaze scanpath as the signal input and then performs behavior

analyses, such as autism classification. In both experiments, we pre-train deep learning

models from public datasets and then adapt these models to small private datasets.

Similar to the previous chapter, we follow the World Medical Association Declaration of

Helsinki - Ethical Principles for Medical Research Involving Human Subjects as well as in

compliance with HIPAA. Our experiments and data collection procedures are approved by

Yale University, Seattle Children’s Research Institute, and the University of Washington.

7.1 Monitoring Machine Learning’s Confidence Toward Novel Data

7.1.1 The Problem

Researchers have examined the feasibility and utility of visible-light cameras for mobile eye

tracking for more than two decades [144, 145]. Recent advancements in deep learning have

improved eye-tracking quality on portable devices [146, 147], including cellphones, tablets,

and laptops.

However, as discussed in previous chapters, data-driven models are often vulnerable to
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outliers, sensitive to data shifts, and susceptible to increased error when deployed with chal-

lenging populations. Eye-tracking technologies should be accessible for people with disor-

ders or disabilities, including individuals with motor neuron disease, dyslexia, epilepsy, and

autism. Facial geometry, head movements, and facial expressions are different for special

populations, which could hamper the generalizability of deep learning models. Gaze calibra-

tion and fine-tuning are common strategies used to combat these issues. However, only a few

studies have examined when and how frequently gaze calibrations are needed. Furthermore,

real-time gaze error measures, which can inform more advanced online adaptive calibration

methods, are underexplored.

In this experiment, we created an iPad eye-tracking application (Section 7.1.2.2), col-

lected 172 hours of data (Section 7.1.2.3) from 62 children (Section 7.1.2.1), applied the

UDA framework (Section 7.1.2.4), designed two distinct strategies to predict calibration er-

rors (Section 7.1.3), and provide suggestions (Section 7.1.4) on future eye-tracking studies.

This experiment does not aim to outperform state-of-the-art deep learning models. Instead,

our main contributions are: 1. showing the importance of creating accessible eye-tracking

technology for challenging populations, 2. applying the UDA framework for gaze estimation,

3. illustrating the correlation between facial expression and gaze estimation quality, and

4. providing insights for future mobile eye-tracking designs.

7.1.2 Method

7.1.2.1 Participants

We recruited 62 children (34 with autism spectrum disorder (ASD), 28 with typical devel-

opment (TD)) as participants for this experiment. Informed consent was obtained from the

parents of all children in the experiment. The Institutional Review Board of Yale University

approved this eye-tracking experiment.
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7.1.2.2 Mobile App and Experimental Setup

To learn about the visual preferences of children with ASD and TD children, we designed

an iPad mobile application to record participants’ responses by using the frontal camera (30

Hz) while they were watching a series of stimuli on the iPad. Participants used an iPad Air 2

(2013-year model) in Landscape-“Right” mode, where the home button is on the right-hand

side, and the camera is on the left-hand side. During an eye-tracking experiment session,

parents placed the iPad on a stiff and immobile surface (such as a table or desk) in brightly

lit conditions, while the children were seated in a chair with their faces 12-18 inches from

the iPad screen.

Calibration stimuli (5 - 10 seconds) and visual preference stimuli (about 75 seconds)

together formed a stimulus block for an experimental session. We showed participants four

stimulus blocks (about 6 minutes total) in each lab and home session. As shown in Figure 7.3,

visual preference stimuli depicted two short video clips (one social and one non-social) side-

by-side simultaneously. Calibration stimuli included static 5-point calibrations and smooth

pursuit (SP) calibrations. Figure 7.1 shows calibration locations. The five points in the

static calibration were presented in one of 10 pseudo-randomized orders.

7.1.2.3 Data Collection

All participants attended lab sessions, and children with ASD also participated in home

sessions. Home sessions were expected to occur at least 3x a week for 16 weeks, with manual

constraints built into the application, so that sessions could be initiated only once every 12

hours.

7.1.2.4 Eye-Tracking Model

Based on the UDA framework and previous eye-tracking studies [146, 147], we created an Eye-

Tracking Convolutional Neural Network (ET-CNN) for gaze prediction. Here, the versatile

encoder contains a face convolutional neural network (CNN), an eye CNN, and a mask CNN,
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Figure 7.1: Calibration Locations. Top: 5-point calibration. Bottom: Smooth Pursuit

calibration.

ASD TD Total

Female 78.12 (14.80) 82.20 (16.38) 80.39 (15.38)

Male 73.12 (16.99) 76.93 (14.26) 74.51 (15.97)

Total 74.29 (16.43) 79.04 (15.04) 74.77 (15.98)

Table 7.1: Age (months) and demographic information for subjects: average and standard

deviation (in parenthesis) are shown. There are a total of 62 participants, where 34 of them

are diagnosed with autism spectrum disorder; 41 of them are male.

where each of these CNNs produce an embedding vector with 1000 neurons. Then, the ET-

CNN concatenates these vectors with six other neurons1. The final two fully-connected layers

apply the dropout mechanism with a 50% dropout rate, which can mitigate the overfitting

problem and can be used for Monte Carlo approximation for error prediction (as discussed

in Chapter 4).

For consistency, we resize the face to 200 x 200 pixels, the eye to 100 x 100 pixels, and the

mask to 100 x 100 pixels. The Face CNN and the Eye CNN have the same structure: each

1a one-hot-vector encoding which represents the device (e.g., iPhone v.s. iPad) and device orientation.
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Figure 7.2: The ET-CNN based on the UDA: Deep-learning-based model for gaze estimation.

The blue region is the versatile encoder. The red region is a personalized gaze-estimation

decoder; it can be either a support vector regressor (SVR) or a fully-connected layer with

hinge loss.

CNN contains one initial convolutional layer (with 16 output channels) and four additional

residual blocks [120] (with 32, 64, 128, or 256 output channels accordingly). Each residual

block contains three convolutional layers with a bottleneck design to reduce the number

of parameters and floating-point operations. After the final convolutional layer, a fully-

connected layer generates a vector with 1000 neurons. Creating an embedding vector with

256 neurons, the Mask CNN is a small network with only four convolutional layers. These

four vectors (from the face, left eye, right eye, and mask) are concatenated together with six

additional neurons, with a one-hot vector to encode the device information (e.g., iPhone v.s.

iPad and device orientation).

Pre-training from the GazeCapture dataset, the UDA trains the encoder and the initial
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Sessions
Number of

Sessions

Length

(Hours)

Lab 176 26

Home 895 146

Table 7.2: Number of sessions and collected experiment lengths. Each lab session is about 7

- 8 minutes each. The length of home session is based on the user.

regression decoder from the adults data. Table 7.3 shows the performance of the UDA (with

the ET-CNN structure) on the GazeCapture dataset: in terms of spatial errors (X, Y, and

Euclidian) and accuracy of determining whether gaze is on the left side or the right side of the

screen. For assessing Left-vs-Right (L/R) accuracy, we only use ground-truth labels at least

1.5 cm away from the center horizontally for consistency with our iPad application (designed

such that stimuli are 1.5 cm away from the center). With the bottleneck design and 1x1

convolutions [120], this ET-CNN performs 14x faster than the originally proposed iTracker

model, but this computational improvement is not our main contribution. More efficient (e.g.,

MobileNet [141], EfficientNet [148]) and accurate (e.g., ViT [149], and other Transformer

models [150]) networks could be used to replace the convolutional neural networks in ET-

CNN, which is beyond the scope of this experiment. As shown in the following section, we

mainly focus on variational inference and gaze calibration errors.

7.1.2.5 Monte Carlo Dropout Option in the UDA

The UDA framework enables us to use Monte Carlo (MC) dropout [151] to perform variance

prediction for gaze estimation. The versatile encoder already integrates dropout layers, which

operate the same way as traditional dropout [152] during training time. Half of the neurons

in the dropout layer will be randomly zeroed during training time, which prevents neurons

from adapting too much to the training data.
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Figure 7.3: The iPad application: a visual preference stimulus is presented on the screen.

Computing Standard Deviations during Inference Time: unlike traditional dropout,

the MC dropout does not calculate the expected value for each neuron during inference time.

Instead, the MC dropout layer is similar to Gibbs sampling [153] and particle filter methods

[154, 155], which perform several stochastic forward passes with different random dropouts.

For simplicity, given an input image, we perform ten random stochastic passes and calculate

standard deviations from these results.

Computation Overhead: the variational inference method mentioned above only re-

sults in an additional 10 × (3262 × 0.5 × 128 + 128 × 0.5 × 2) ≈ 2.1 million floating point

calculations. Compared to the whole ET-CNN model that costs 90 million floating-point

operations to process one image, the computation overhead of this MC dropout mechanism

is relatively small.
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Figure 7.4: Testing errors from the GazeCapture dataset on iPad with Landscape Right

mode.

7.1.2.6 Personalized Decoders

We use a linear-kernel support vector regression (SVR) model that learns from features in the

last hidden layer (1000 neurons) to perform calibration and train personalized decoders for

each subject. This method is similar to linear probing [156]. We examined several different

machine learning models (including a mixture of Gaussians, decision trees, random forests,

gradient boost trees, and SVR). The SVR performs the best among all models, which is

consistent with prior work [147, 146].
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Method # Params # FLOPs X Error Y Error Euclidean Error L/R Accuracy

iTracker [147] 6.29 M 1320 M 2.06 2.12 3.27 0.86

Ours 2.48 M 90M 1.90 2.546 3.53 0.86

Table 7.3: Testing Errors (calibration free) in the GazeCapture dataset on iPad Landscape

Right mode, where the home button is on participant’s right-hand side. The unit for X Error,

Y Error, and Euclidean Error is in centimeters. While maintaining similar performance, the

proposed method is about 2.5x smaller and 14x faster than the iTracker model, as shown in

the number of model parameters (# Params) and the number of floating point operations

(# FLOPs) columns. Both models achieved similar Left-versus-Right (L/R) classification

accuracy. The iTracker model is more accurate on vertical predictions (Y-axis), and our

proposed model is stronger in horizontal predictions (X-axis).

7.1.3 Analyses: Two Perspectives on Predicting Errors

This section evaluates the UDA’s performance in predicting the versatile encoder’s confidence

on novel data. If we can estimate eye-tracking errors during experiments, researchers can

bring interactive real-time calibrations to real-world eye-tracking applications. However,

this non-trivial error prediction task, especially for mobile device eye tracking, remains an

understudied area of eye-tracking research. Here, we present two different strategies to

predict calibration error, and the UDA shows promising results achieving the error-prediction

goal.

7.1.3.1 Facial Attribute Perspective

Many researchers have studied how gaze patterns change in response to emotional content

[157, 158], but to our knowledge no groups have applied affective computing for eye-tracking

quality control. Using the previsouly mentioned facial attributes analysis tool (Chapter 6)

designed for children with ASD [69], we analyzed how facial action units (AU), emotion,
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valence, and arousal could influence eye-tracking errors (Table 7.4a).

The size of the detected face was, as expected, negatively correlated with eye-tracking

error, which means larger faces are likely associated with larger eyes and, consequently, better

gaze estimation. As shown in Table 7.4a, many facial action units [159, 160] correlated with

eye-tracking error. A high proportion of frames with AU 43 (Eyes Closed) would result in

higher eye-tracking errors due to increased instability of eye-tracking around moments of lost

data. Facial action units 1, 5, and 2 are also associated with movements that result in larger

and more visible eyes, which could explain how their increased presence is associated with

lower eye-tracking errors. These findings are consistent with the fact that participants often

open their eyes widely to improve data quality in eye-tracking experiments.

Neither valence nor arousal is correlated with eye-tracking errors. However, increased

presence of the “joy” facial expression correlated with increased eye-tracking error (r=0.10,

p=0.019). Joy is associated with facial action unit 12 (Lip Corner Puller) and facial action

unit 6 (Cheek Raiser). Raising cheeks has the side effect of diminishing the visible portion

of the eye, making gaze estimation more difficult.

7.1.3.2 Monte Carlo Perspective from UDA

We performed similar statistical analyses to characterize the predicted uncertainty with

actual gaze estimation error. As shown in Table 7.4b, the predicted standard deviations

(σ) from the MC mechanism in the x-axis (r=0.31), y-axis (r=0.35), and Euclidean distance

(r=0.41) were highly correlated with actual errors. These associations with gaze error are

stronger than those found with facial attributes. The larger the predicted σ, the larger the

actual gaze estimation errors are.

7.1.3.3 Predicting Errors

Previous analyses illustrated significant correlations between gaze errors and our extracted

features. While the facial attribute features are valuable and interpretable for psychological
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Feature r Adj. p

Face Size -0.29 < 10−3

43 (Eyes Closed) 0.21 < 10−3

1 (Inner Brow Raiser) -0.20 < 10−3

17 (Chin Raiser) -0.15 < 10−3

5 (Upper Lid Raiser) -0.15 0.001

2 (Outer Brow Raiser) -0.11 0.001

Joy 0.10 0.019

(a) Correlation for facial expression.

σ of MC Dropout r Adj. p

Euclidean 0.41 < 10−3

x-axis 0.35 < 10−3

y-axis 0.31 < 10−3

(b) Correlation (r) from Monte Carlo (MC)

Dropout, where the standard deviation (σ) is

calculated through MC approximations per

frame and then, averaged for a 5-second mov-

ing window.

Table 7.4: Two perspectives of calibration errors. In the lab setting, we performed correlation

analyses from 24 features to the gaze estimation error, where 20 features are from affective

computing, 1 is from face size, and 3 are from Monte Carlo dropout. Highly correlated

features are listed in the tables and are ranked by absolute value of correlation. Correlation

has a range of [-1, 1], where random guessing has a correlation of 0. Positive correlations

mean the more present a feature, the higher the gaze calibration error. Correlations and

associated p-values were computed using a repeated measures correlation method in order

to avoid pseudoreplication.
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Features RMSE (cm)

Facial 1.03

MC Dropout 0.86

Both 0.81

Table 7.5: Predicting calibration error by using either facial attributes, Monte Carlo (MC)

dropout, or both. Root mean squared errors (RMSE) in centimeters are reported for the

testing participants.

analysis and affective computing, the Monte Carlo features follow an end-to-end design and

have a higher correlation with calibration errors.

Then, we use these correlated facial attributes and MC standard deviations to predict

eye-tracking data quality. The results are shown in Table 7.5. We used 49 participants to

train a linear-kernel Support Vector Regressor (SVR) model to predict eye-tracking errors

and used the rest for testing. The Monte Carlo dropout mechanism model outperforms the

facial attributes-based model, but their combination performs better than both, suggesting

potential contributions of both facial expression and ET-CNN estimation to estimating gaze

error.

7.1.4 Adaptation with Gaze Calibration

The previous section suggests that the Monte Carlo dropout mechanism is highly corre-

lated and can predict eye-tracking errors. Here, we further explore practical topics for real-

world mobile eye-tracking applications. More analyses, including real-time simulation and

rejection-vs-quality tradeoff, are attached in the Supplement material.



81

7.1.4.1 Error Analyses: Gaze Estimation Quality in Special Populations

In Section 7.1.2.4, we showed that the UDA achieved comparable performance with iTracker

in the GazeCapture dataset [147]. However, only a few studies examined the generalizability

of deep learning models to other populations. Here, we applied ET-CNN to the collected

dataset from children.

As shown in Table 7.5, testing errors are significantly higher in children with autism

than in typically developing adults. While the average Euclidean error for adults is 3.53

centimeters on iPad in the Landscape-Right mode, this error for children with ASD rises to

4.96 centimeters in the same mode. Eye-tracking technologies should be robust for differ-

ent populations, where participants’ skin color, age, gender, cultural background, cognitive

conditions, pose, and movements could affect the performance of deep learning models. In

the future, to robustly deploy deep learning-based eye-tracking models for practical use,

researchers might need to evaluate testing errors separately for different populations.

7.1.4.2 Calibration Stimuli: 5 Points versus Smooth Pursuit

Because of high gaze estimation errors for children with ASD, we performed eye-tracking

calibrations (Section 7.1.2.6) to the dataset. As discussed in Section 7.1.2.2, there are two

types of eye-tracking calibration tasks, and we evaluated them separately with four exper-

iments: no calibrations (None), with only 5-point calibrations, with only smooth pursuit

(SP) calibrations, and with both types of calibrations. We evaluated the testing errors with

leave-one-out cross-validation.

As shown in Table 7.6, smooth pursuit calibrations are better than 5-point calibrations

in terms of Euclidean errors. Using a hybrid calibration stimulus with 5-point and smooth

pursuit, we reduced the Euclidean error by about 0.5 to 4.32 centimeters. This result sug-

gests that adding additional calibration content, such as the SP calibration, could increase

calibration variety and improve calibration performance.

However, we note that in terms of gauging whether a child is looking left-vs-right (L/R) or
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Population
Data

Source

Euclidean

Error

L/R

Accuracy

U/D

Accuracy

Adults [147] 3.53 0.86 0.82

TD Children Lab 4.65 0.82 0.74

Children with ASD Lab 4.86 0.81 0.68

Children with ASD Home 4.96 0.74 0.65

Figure 7.5: Testing errors (without personalized calibration) of gaze estimation on different

population: we evaluate our deep learning model on different populations: adults, typical

developing children (TD), children with autism (ASD). Note that testing subjects never

appeared in the training set, and only iPad data with Landscape-Right mode are evaluated

for consistency. The performance degrade significantly from adults to children and from lab

session to home session.

Calibrate

On

Euclidean

Error

L/R

Accuracy

U/D

Accuracy

None 4.80 0.81 0.71

5-point 4.59 0.81 0.74

Smooth Pursuit 4.47 0.82 0.69

Both 4.32 0.82 0.72

Figure 7.6: Calibrating on different calibration stimuli: 5-points versus Smooth Pursuit

(SP). Here, we included all data we collected. We show testing errors by using None (no

calibrations), 5-point calibrations, SP calibrations, and both 5-point and SP calibrations.
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up-vs-down (U/D), the use of calibration did not noticeably appear to impact performance.

The one exception is decreased U/D accuracy when using SP calibrations, potentially due to

our specific implementation of SP calibration, which contained limited vertical movement.

One reason for the lack of practical impact on dichotomous classification compared to Eu-

clidean improvements is that we discarded more complex cases at the center of the screen

to reflect areas of heightened L/R or U/D classification uncertainty. However, these findings

also suggest that the utility of calibration methods on mobile device eye tracking may depend

on assumptions regarding regions of specific interest and application requirements.

Demonstrating the limitations of data-driven models, we aim to evaluate calibration stim-

uli’ effectiveness rather than create a state-of-art calibration algorithm. This improvement

(0.5 centimeters) might be slight for typical adults, but it is still significant for children with

disorders.

7.1.5 Discussions and Conclusion

We extended calibration strategies to adapt data shift in gaze estimation. We used the

Monte Carlo option in UDA to predict gaze estimation errors and calibrate users’ gaze data.

The calibration overhead is relatively tiny: gaze estimation error is reduced by 10% with one

calibration. We can apply the proposed systems for various eye-tracking tasks in the future.

In this experiment, we collected eye-tracking data for children with autism in both labo-

ratory and home environments. This challenging real-world dataset illustrates the limitation

of prior deep learning-based gaze estimation strategies. Based on the UDA, we created a

facial attribute framework and a Monte Carlo framework to predict the standard deviation

of a deep learning model’s estimation, which highly correlates with actual errors. This anal-

ysis also suggested gaze error relationships with facial action units and emotional expression,

pointing to the need to consider how child affect impacts the eye-tracking data quality more

deeply and nuanced. For populations that may react atypically in terms of their affective

conveyances, such considerations will be necessary for democratizing deep learning-based

methods for eye-tracking studies.
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7.2 Learning Oculomotor Behaviors from Self-Supervision

Human oculomotor behaviors are strongly associated with internal mental states. For ex-

ample, pupil sizes change with cognitive load [161], oculomotor gaze properties change with

emotional state [162], and patterns of visual exploration associate with skills such as execu-

tive functioning [163]. Because of this diversity of both measure and application, eye tracking

has been used as a multi-modal technology to study human cognition in many psycholog-

ical investigations, including human-computer interaction (HCI) studies. Prior work has

spanned from studies of drivers’ distractions in transportation [164], to pathologists’ mental

processes in medical imaging interpretation [165], to consumers’ attention towards marketing

materials [166]. Most eye-tracking studies are usually task-specific, and their analysis and

interpretation typically require human expert knowledge.

The scarcity of labeled data is the primary challenge for researchers seeking to employ

more domain-agnostic machine learning approaches in eye-tracking studies. While unlabeled

eye-tracking data is plentiful, acquiring human subject data and assigning appropriate labels

to this data has a high overhead cost. Annotating eye-tracking data with labels such as

cognitive states, psychiatric conditions, or purchasing behaviors requires human reporting

and expertise. Moreover, only a few large public eye-tracking datasets are available for

researchers, with most eye-tracking studies including fewer than 30 participants [167]. To

avoid the burdensome process of manually specifying relevant oculomotor features, data

scientists need a more scalable and generalizable approach such that broader and more

diverse eye-tracking applications may be enabled.

To address the scarcity of annotated data in eye-tracking studies, we apply the UDA

framework with an oculomotor behavior encoder to automate eye-tracking scanpath analy-

sis. As the design of UDA, this model includes a neural network-based encoder to encode

properties of human gaze behaviors from scanpath data of arbitrary length and thus can

facilitate many eye-tracking data mining applications. In this experiment, UDA leverages

four pre-training tasks (pre-tasks) and four corresponding decoders to learn from unlabelled
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data. We pre-train the UDA on these datasets and conduct proof-of-concept experiments

that demonstrate it is robust to data label scarcity. In the future, researchers can use the pre-

trained UDA for many different downstream eye-tracking applications, including cognitive

analysis, stimuli prediction, and participant classification.

7.2.1 Background: Scanpath Analyses

In desktop-mounted eye-tracking studies, researchers usually set up stimuli on a computer

screen and use an eye-tracking device to capture participants’ eye movements and the focal

location of their gaze. The eye-tracking scanpath is a time series signal discretely recorded

as (x, y) screen coordinates of a user’s gaze.

Region-of-interest (ROI), saliency, and scanpath analyses are popular ways to analyze

eye-tracking data. ROI analysis utilizes detailed knowledge of the presented stimuli; for

instance, many eye-tracking studies of ASD have found that children with ASD look less at

human faces [168, 169]. Saliency predictions, which also depend on stimuli, try to predict

where humans look by analyzing the shown stimulus. On the other hand, scanpath analysis

usually does not have access to the stimulus, thus treating the stimulus as a “black box.”

In this section, we focus on stimulus-agnostic scanpath methods so that the UDA could be

generalized to more diverse eye-tracking stimuli and datasets.

Traditional scanpath analyses usually first apply fixation identification algorithms to

reduce the scanpath time series to a series of discrete spatially- and temporally-constrained

gaze fixations. Then, experts extract various features, such as fixation convex hull shape,

fixation speed, fixation duration, and cohesion [170] from the identified fixations. These

approaches are usually effective for specific applications but often not generalizable to other

eye-tracking studies.

Previous studies have used Hidden Markov models [171], convolutional neural networks

[172], recurrent neural networks (RNNs) [173], autoencoders [174] and other machine learning

methods to extract features from scanpaths, but most of these studies only focus on a specific

machine learning task. Similarly, random forests, SVMs, MLPs, and other machine learning
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Figure 7.7: Applying the UDA to Learn Oculomotor Behavior from Scanpath. The model

is constructed from the blocks inside the blue dashed region. The purple encoder (enc)

and decoder (dec) blocks have the same sequential architecture (i.e., RNN, GRU, LSTM,

Transformer, etc.).

approaches have been used on expert-designed features. By contrast, we focus on automatic

methods to learn useful features for various eye-tracking applications in this work.

7.2.2 UDA for Eye-Tracking Scanpath

Here, the UDA framework includes an encoder and four decoders for four auxiliary pre-

training tasks. The pre-task selection process involved eye-tracking experts’ suggestions and

evaluative machine learning experiments. The four pre-training tasks are reconstruction

(RC), predictive coding (PC), fixation identification (FI), and contrastive learning (CL).

The RC, PC, and CL tasks use classic self-supervised learning approaches, and the FI task

applies supervised learning by automatically acquiring ground truth labels from I-VT [175],

a common fixation identification algorithm.
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7.2.2.1 The Encoder Network

The versatile encoder in UDA contains an optional convolutional block and a sequential

encoder block. These blocks can have arbitrary sizes, dimensions, and architectures. The

sequential encoder block can be any recurrent unit (e.g., RNN [18], GRU [176], LSTM [40])

or a Transformer block [41]. If the sequential encoder block is a recurrent unit, the versatile

encoder in UDA will concatenate hidden states (and also cell states for LSTM) from all

recurrent layers to create the embedding. If it is a Transformer, latent vectors from all

timepoints will be used in the sequential decoders, and the last latent vector (for the <End-

of-Sequence> token) will be used as the embedding. Modern deep learning applications have

widely adopted these structures, and we will not describe them here.

7.2.2.2 Pre-Training Tasks Overview

The decoders for RC, PC, and FI tasks are sequential, meaning that their outputs are

sequences of predictions. These decoders have the same architecture as the sequential encoder

(i.e., RNN, GRU, LSTM, Transformer). For recurrent encoders and decoders, the forward

and backward pass for each task follows the seq2seq design [177]. For Transformer blocks,

each task follows the original Transformer autoencoder design [41]. Unlike the above pre-

tasks, the CL task does not require sequential prediction. The CL decoder, which deploys

the Siamese network design [84], uses the last latent vector as input for classification or

clustering purposes.

7.2.2.3 Pre-Task: Reconstruction

Input reconstruction (RC) has been widely used to train autoencoders since the Helmholtz

machine [13]. The encoder and the RC decoder learn from recovering 5 - 10 seconds signals.

As discussed in previous chapters, the reconstruction loss is the standard mean squared

error (MSE) between input and output reconstruction. The RC task forces the encoder to

compress important information into a low-dimensional embedding, and then the RC decoder
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can recover the original input signal. Encoding and decoding signals usually result in smooth

signals because the noise in signals only has a negligible impact on the reconstruction loss,

as shown in Figure 7.7. This result is the desired behavior because it maintains essential

information while neglecting trivial noise.

7.2.2.4 Pre-Task: Predictive Coding

Human brains tend to predict what will happen in the immediate future [20]. Previous

studies also indicate that machines may have similar predictive coding (PC) abilities [178]

and that learning from predictions of the future can give insight into input data [179]. Similar

to the PredNet [21] that performs next-frame prediction in video sequences, the PC decoder

use self-supervised learning to predict the oculomotor scanpath in the next 500 milliseconds

by analyzing the last 5-10 seconds of the existing scanpath. Predicting future sequences

requires the encoder to learn trends and patterns from the input, which is more challenging

than simply reconstructing the input signal.

7.2.2.5 Pre-Task: Fixation Identification

Extracting information from fixations and filtering out noise from saccades are thus essential

steps in eye-tracking data analyses. Researchers have invented various fixation identification

(FI) algorithms to extract fixations, a process specific to gaze studies and not commonly

employed in other signal processing application domains. UDA approaches FI as a semantic

segmentation task without human annotation. The ground-truth labels are approximated

from the I-VT (identification with velocity threshold) algorithm [175], which uses gaze veloc-

ity with expert-defined thresholds (i.e., 100 visual degrees per second, 200 ms minimum fixa-

tion length) to separate fixations and saccades. UDA performs binary classification (identify

“fixation” or “saccade”) for each timepoint in the scanpath sequence. This FI task can help

the UDA learn the concept of fixations and extract relevant features from the input scanpath

sequence. This information is usually crucial for eye-tracking studies to understand human

cognitive states.
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7.2.2.6 Pre-Task: Contrastive Learning

Inspired by BERT [4] and related studies, we designed the CL decoder to decide if two

scanpath segments come from the same scanpath. In a minibatch of scanpaths, we randomly

cut small segments from the original scanpath, where each segment is about 20% - 40% of

the length of the original scanpath. The CL decoder thus provides access to oculomotor

behaviors that distinguish one scanpath from another.

As discussed, the CL decoder uses Siamese network architecture to encode scanpath

segments x1 and x2 to two embeddings. Then, the CL decoder calculates the absolute

distances for each dimension between the two segment embeddings, which are fed into a

multi-layer perceptron (MLP) for classification.

7.2.2.7 Pre-Training Dataset

Merging datasets is a standard strategy in modern deep learning studies for expanding and di-

versifying training datasets. Following this strategy, we assemble a multi-source eye-tracking

dataset with different types of presentation stimuli, experiment length, eye trackers, mon-

itors, hardware setups (e.g., with/without chin rest), and participants. We pre-train UDA

on three datasets (Table 7.6): the Lomonosov Moscow State University (MSU) study col-

lected eye-tracking data from 48 participants, each of whom watched 41 video sequences;

the Coutrot & Guyader (C&G)-1 study recruited 72 participants to watch 60 stimuli in four

different audio-visual conditions, where 18 participants watched each audio-visual condition;

the C&G-2 study recruited 40 participants in 2 conditions, where 20 subjects watched each

condition. We chose these datasets because they recruited many participants from various

setups, which could enrich the diversity for our pre-training stage.

To the best of our knowledge, no participants in the pre-training data appeared in the

downstream application. During batch processing in the pre-training phase, a batch only

contains signals from one database so that the CL task could be more challenging for the

UDA to learn.
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Set Dataset Eye-Tracker Resolution Monitor Scanpath Length # Data

Pre-Train

MSU [180] SMI iView 1250 1920x1080 - 16 - 38 sec 2,377

C&G-1 [181] Eye-Link 1000 1024x768 21 inch 8 - 30 sec 4,283

C&G-2 [182] Eye-Link 1000 1280x1024 22 inch 20 - 80 sec 592

Downstream
MIT-1003 [183] ISCAN RK-464 1280x1024 19 inch 3 sec 15,045

Autism Eye-Link 1000+ 1920x1080 22 inch 15 - 23 sec 931

Table 7.6: The datasets used in the pre-training stage and downstream application stage.

The monitor resolution size, the length of each scanpath, and the number of scanpaths are

listed.

7.2.2.8 Data Representation

To create a general method for all types of eye-tracking data, we pre-process the data by

using the following criteria. All signals are resampled to 60 Hz with bilinear interpretation

because previous studies suggest many oculomotor behaviors could be analyzed within 60

Hz [184, 185]. If the gaze data is binocular, the left and right eye signals are averaged. The

screen center coordinates are assigned to (0, 0). Coordinates (x, y) represent horizontal and

vertical locations, respectively. The coordinate unit is normalized to visual degrees because

pixels are not meaningful across different eye-tracker setups. Missing data due to equipment

failure or blinks are filled with bilinear interpolation. However, when more than 50% of data

are missing in a scanpath, the whole scanpath is discarded. Gaze points more than ten visual

degrees off-screen are marked as an extreme value (i.e., -180 degrees); this usually indicates

the participant is distracted during the experiment.

7.2.2.9 Pre-Training Engineering Details

Unless otherwise specified, we use the following UDA encoder, which we tuned to balance

runtime and performance:
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• The UDA encoder contains a convolutional layer (with kernel size 7 and 30 output

channels), a leaky ReLU activation layer, a residual connection to the input, and an

average pooling layer (with kernel size 2).

• The UDA encoder uses a 2-Layer GRU unit with 128 hidden neurons in each layer.

• The RC, PC, and FI decoders in the UDA have the same architecture as the UDA

encoder’s sequential block (i.e., 2-Layer GRU unit with 128 hidden neurons in each

layer).

• The CL decoder has a hidden layer with 128 neurons, a sigmoid activation layer, and

a batch normalization layer.
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Figure 7.8: Results from the Pre-Train Stage: the proposed encoder encodes the input signal

(with size ∼ 8 KB) to an embedding vector (with size 0.5 KB). We show the input signal

(x signal in orange and y signal in blue) in the first column, the reconstructed signal in the

second column, and the predicted future signal in green and red lines in the second column.

The third column shows the saccades from the fixation identification (FI) task.
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We pre-train the UDA for 500 epochs with a learning rate of 0.001. The learning rate is

halved every 100 epochs. The gradient for each neuron is clipped to 0.5 to avoid the gradient

exploding. We set the mini-batch size to 64 based on computational efficiency considerations.

We use 80% of the scanpaths for training, and the rest for validation for the standard

supervised learning experiment. The following metrics are calculated for the validation set:

for the RC and PC tasks, we use mean Euclidean distance as the evaluation metric; for the FI

task, we use Area-Under-ROC-curve (AUC) score because the testing labels are unbalanced;

and for the CL task, we use accuracy;

Figure 7.8 shows an example of inputs and outputs from the pre-training stage. A detailed

analysis of UDA is given in Section 7.2.5.UDA’s pre-task results are shown in Table D.3 and

Table D.4 where they are compared to results of educated guessing (mean for regression

tasks, or majority for classification tasks) and state-of-the-art methods. We re-implement

the fully convolutional variational autoencoder (C-VAE) described in [172] and use it with

the proposed UDA pre-training tasks. UDA performs well on all four pre-tasks even with a

small embedding vector.

7.2.3 Results

Our novel pre-training methodology combines both self-supervised and supervised approaches

so that the UDA can learn to encode important oculomotor behaviors from unlabeled scan-

path data. The UDA can predict which stimulus a user watched, and it is 1.1 to 2 times

more effective with the proposed pre-training tasks. The extracted features from the UDA

can also be used directly to classify children with and without autism. In the future, data

analysts can use the pre-trained UDA directly in their cognition, psychology, marketing,

and other studies that involve eye-tracking technologies. Moreover, this section showed the

potential autoencoders have to address data shift problems.
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7.2.4 Adapting for Deployment: Example Applications

To illustrate the low-resource data adaptation in UDA, we conduct experiments on two

downstream applications - stimulus prediction and autism classification. The pre-trained

UDA achieved promising results during supervised learning and transfer learning in both

downstream applications. We also conduct meta-learning experiments for the stimulus pre-

diction application, where the UDA can work with more advanced learning techniques to

boost classification performance.

7.2.4.1 Stimulus Prediction

We use the MIT-1003 dataset for this stimulus prediction experiment, where we would like

to predict which stimulus the user was watching based on her/his gaze scanpaths. Originally

designed to study saliency maps of images, the MIT-1003 dataset has 15,045 scanpaths. The

large number of scanpaths in this dataset can help us evaluate the pre-training effects in

detail. In total, 15 users participated the experiment, with each participant watching 1003

stimuli (i.e., images) for 3 seconds on each stimulus. This experiment illustrates how pre-

training and fine-tuning the UDA could improve downstream application performance when

the number of users in an eye-tracking experiment is low.

We use a classification decoder (i.e., a multi-layer perceptron) for the standard supervised

learning experiment. The input signal first feeds into the UDA (corresponding to the dashed

blue box in Figure 7.7); then, the MLP predicts which stimulus the user was watching based

on the embedding calculated by the UDA. The MLP contains 2 hidden layers (with 256 and

512 neurons each): for each hidden layer, we add a dropout layer (with 0.5 probability),

sigmoid activation, and batch normalization.

We also performed a metric-based meta-learning experiment with a prototypical decoder

[82] for this downstream application. We reserved 200 stimuli for meta-training because most

eye-tracking studies involve fewer than 200 stimuli (as shown in [167]). We train all models

for 100 epochs with 100 iterations per epoch. The model used in this experiment has the



94

same structure as the one in the supervised learning experiment, and we use 128 neurons as

the embedding space for the metric-based meta-learning.

For both the supervised and metric-based experiments, we compare the UDA model with

the C-VAE model (with the same structure as proposed in [172]) and a baseline method that

is not pre-trained in the UDA framework. To better understand the effect of pre-training, we

perform c-way k-shot classification experiments to learn from c stimuli and k users, where

c ∈ [10, 100, 1003] and k ∈ [1, 3, 5, 10]. The pre-trained UDA model performs 1.1 - 2 times

better than the baseline in all the settings. This result suggests that UDA may be of benefit

to the training of future eye-tracking applications, despite those applications being developed

from data from only a few participants.

7.2.4.2 Autism Classification

To further illustrate the usefulness of UDA ’s learned representations, we apply UDA to a

challenging real-world eye-tracking dataset acquired from children with and without autism

spectrum disorder (ASD). Researchers can extract embeddings from the UDA and then apply

traditional machine learning approaches directly without fine-tuning theUDA.

In total, 49 children from this experiment were included in the examined dataset, with

thirty-eight of the children diagnosed with ASD and the rest typically developing (TD) chil-

dren. These children watched 19 stimuli on a 22-inch screen monitor in a room together with

their parents and an experimenter. The monitor-to-head distance is about 65 centimeters,

and the whole experiment takes about 11 minutes. The medical ethics Institutional Review

Boards approved the data acquisition protocol from Yale University and the Seattle Chil-

dren’s Research Institute. As appropriate, eye-tracking data was collected under parents’

and participants’ consent and assent. Data handling was compliant with Health Insurance

Portability and Accountability Act (HIPAA) and institutional data security guidelines. The

experiment protocol follows Good Clinical Research Practice (GCP).

We want to classify the participants into two groups (ASD v.s. TD) by analyzing their

scanpaths. For a given participant’s data, the UDA first extracts the embedding for each
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scanpath and then concatenates all the embeddings together to form a final long embedding.

We use the lasso for the classification task because the lasso’s L1 regularization encourages

the model to ignore redundant features from the long embedding vector.

We compare the features extracted from the pre-trained UDA with expert-guided features.

The expert-guided scanpath features include the number of fixations, total fixation duration,

saccade speeds, and average fixation speed, all of which have been used in previous autism

research (e.g., discussed in [186]). We also compare these results with our previous state-of-

the-art SGIN [187] method, which employs deep neural networks on features extracted from

traditional ROI and scanpath analyses to provide state-of-the-art performance benchmarks

in the autism classification task.

We use 5-fold cross-validation to evaluate these features, as shown in Table 7.7. The

representations learned by the UDA outperform the expert-guided features by a large margin.

The UDA shows promising results even though it employs fewer stimuli and participants

compared to [187]. Table D.1 shows more detailed analyses on how the pre-tasks could

influence UDA’s performance on autism classification.

Method Accuracy AUC F1

Expert Features from [186] 0.74 0.68 0.82

SGIN (with more data) [187] 0.78 0.83 0.83

Ours (UDA) 0.80 0.83 0.88

Table 7.7: Results for Autism Classification

7.2.5 Discussions and Ablations

Here, we perform ablation studies on different backbone units, model sizes, pre-tasks, and

pre-training datasets. For the following analysis, we evaluate the inference runtime on an
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Nvidia GTX 1080 for 600-length (10-second) scanpaths. We evaluated 1450 scanpaths with-

out batch processing and reported the average runtime in milliseconds. Future studies can

trade off the runtime and performance for their specific needs.

7.2.5.1 Effects from UDA Backbone

We validate the RNN, the GRU, the LSTM, and the Transformer for the sequential encoder

and decoder blocks for the UDA (Table D.3). The GRU and the LSTM perform well on all

pre-tasks, and the GRU is more memory-efficient than the LSTM. Standard RNN units per-

form the worst among all tested backbones. In our pre-train experiments, the input sequence

can contain over 600 timepoints (10 seconds of data), which might cause the vanishing of

gradient problems inside the standard RNN unit. The memory gate inside the GRU and

LSTM can help mitigate this problem.

Surprisingly, the Transformer model performs worse than recurrent methods in the pre-

tasks. We re-evaluated the Transformer with the MIT-1003 downstream application, and its

performance is similar to GRU UDA ’s performance. The positional encoding might smooth

valuable signals when the hidden dimension is not high enough, while the RC, PC, and FI

pre-tasks rely heavily on the position information.

While the UDA method performs similarly on the PC and FI tasks regardless of whether

the optional convolution block is included, adding the convolution block is still advantageous

because it makes the recurrent block more efficient. The convolution block halves the number

of time-steps required and thus significantly reduces the UDA’s runtime.

While the C-VAE [172] has the fastest inference runtime, its performance is slightly lower

than the GRU and the LSTM units even after we control for model size (Table D.4, first

row). Additionally, the C-VAE could not encode various-length scanpaths into fixed-length

embeddings, which is a potential limitation given that scanpaths can have radically different

lengths. Nevertheless, researchers could use the fully-convolutional design for applications

with similar-length scanpaths.
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7.2.5.2 Effects from the UDA Model Size

The above table shows that small model sizes (e.g., 2 layers x 32 hidden units) can also yield

satisfactory performance. Thus, the UDA has potential for future mobile-efficient real-time

inference on cellphones and portable devices. Still, larger models can perform better than

relatively more minor models. Increasing the number of layers significantly impacts runtime,

while increasing the number of neurons has a significant impact on model size. With a two-

layer GRU, the number of neurons in each hidden layer has minimal effects on the inference

runtime. The marginal improvement from model size diminishes with more than 4 layers or

256 neurons, which could be a limitation from the pre-train dataset size.

7.2.5.3 Effects from Pre-Tasks

To evaluate how each pre-task could influenceUDA ’s performance in downstream applica-

tions, we conduct the following ablation experiments by removing one pre-task in each exper-

iment. Results from Appendix Table D.1 indicate that all four of these pre-tasks positively

contribute to the UDA’s downstream performance. For the MIT-1003 stimulus prediction

application, the CL and RC tasks contribute the most, while the FI task contributes the

least. This phenomenon might be caused by the fact that fewer fixations are presented in

the short period (3 seconds) of time, but the locations (predicted in the reconstruction task)

and similarities (implicitly learned in the contrastive learning task) are more valuable for

this stimulus prediction task. On the other hand, the FI task contributes the most to the

autism classification application, which might be caused by the fact that children with and

without ASD have distinct fixation behavior and cognitive loads [188].

While all four of the pre-tasks are helpful for future downstream applications, eye-tracking

and machine learning researchers could design other relevant pre-tasks to improve the UDA

’s performance. We also examined the following pre-training tasks: “data source prediction”,

“prediction of the number of fixations/saccades”, and many others. We found that the data

source prediction task was too easy because participants engaged in very different tasks for
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different data sets (e.g., visual search, video watching), and these tasks were highly distin-

guishable based on trivial features (e.g., average gaze position). The number of fixations and

saccades are highly correlated with the length of the signal, and the UDA framework failed

to develop generalized representations of fixations and saccades based on fixation/saccade

count prediction. We replaced these tasks with an explicit fixation identification task, which

allowed for much richer physiologically-meaningful representations.

7.2.5.4 Effects from Diverse Datasets

Adding more diverse datasets in the pre-train stage could improve downstream applications’

performance (details in Appendix). As giant billion-parameter pre-trained models have been

released for computer vision and natural language processing in recent years, larger pre-

trained models for eye-tracking data could be possible in the future when more public datasets

are fed into UDA.

7.2.5.5 Broader Impact

The UDA has promising potential to aid human experts in cognitive analysis, autism classi-

fication, healthcare applications, and human-computer interactions with eye-tracking tech-

nology. The UDA method could also compress eye-tracking data into a lower-dimension

embedding, which can help database systems to store valuable data more efficiently.

However, the UDA could have a malignant impact on privacy if it is used without users’

permission or acknowledgment. In the future, privacy-preserving deep learning techniques,

such as federated learning, could help alleviate privacy vulnerability. We advocate responsi-

ble and human-centered deployments of these deep learning technologies. To the best of our

knowledge, all eye-tracking data used in this experiment are agreed upon by the participants,

and all these data are anonymized.
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7.2.5.6 Limitations and Future Directions

This section uses datasets from desktop-mounted eye-trackers because most physiology stud-

ies use similar eye-trackers. However, we believe our approach would be easily applied to

head-mounted eye-trackers (e.g., eye-trackers in Google Glass, Oculus).

Focusing on the pre-training methodologies, we show that UDA can perform well even

with traditional supervised learning, transfer learning, and meta-learning in downstream ap-

plications. In the future, more learning techniques can be tested to improve the performance

in these downstream applications further.

7.3 Summary

By using the UDA framework, we created two promising eye-tracking applications in this

chapter. While the first application illustrates the effectiveness on detecting data shift with

confidence estimation functions, the second application demonstrates the ability in few-

shot learning. Even if the medical imaging and behavior analyses applications (such as

facial expression and gaze estimation) are post-hoc analyses, they can run in real-time if

data streams are available. With an application in database management systems, the next

chapter shows a real-time application to detect and adapt data shifts online.
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Chapter 8

APPLICATIONS FOR DATABASE OPTIMIZATION

Researchers have explored different methods to estimate the cardinality of a given query

inside a table, which is the most fundamental step for database optimization. Even if random

sampling performs well for high-cardinality queries, as shown in our previous analyses [189,

190], machine learning-based approaches still have advantages over low-cardinality workloads.

However, machine learning-based cardinality estimators are vulnerable to data shifts after

deployment.

In this chapter, we apply the UDA framework to adapt learned cardinality estimators in

real-time when only limited queries are available [70]. To distinguish this tailored version of

the query adaptation system with the general UDA framework, we call this system Warper .

Warper shows the complete life cycle of the development and production threads: the un-

derlying UDA system needs to learn data representation during training and to adapt novel

samples during inference. We evaluated Warper with four different low-resource data shifts.

We introduce the cardinality estimation (CE) task in Section 8.1, describe the architec-

ture design of Warper in Section 8.2, and show experimental results in Section 8.3. All

experiments in this chapter perform real-time inference for newly incoming data samples.

8.1 Machine Learning-based Cardinality Estimation

Learned Models (LM) [191] and MSCN [192] are popular machine learning-based cardinality

estimators. These models train over a corpus of (predicate, cardinality) pairs for each relation

and aim to estimate the cardinality for a given, possibly unseen, predicate. These models

suffer the same low-resource problem and data shift problem as previous applications – even if

ML models show promising accuracy on predicates that are similar to those used in training,
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changes to the underlying data or predicates can cause sizable drops in accuracy [191, 192,

193, 194].

Responding to changes in data or predicate workload, prior solutions suggest updating

the models by re-training or fine-tuning using newly drawn (predicate, cardinality) pairs [191,

192]. Since these models require training sets of several thousands of queries, re-obtaining

the updated training corpus is costly and has high latency. If only the data changes, the

ground-truth cardinality labels will have to be recomputed [195, 192]. Worse, when the

predicate workload changes, the models may have to wait until enough new queries appear.

The net result is that model adaptation is slow and expensive; poor cardinality estimates

lead to imperfect plan choices and query performance degradation. Thus, these cardinality

estimators encountered the low-resource data adaptation problem.

An ideal adaptation technique should satisfy the following requirements. First, the costs

to adapt models should be small, especially relative to the benefits. Next, different scenarios

require different adaptations. For example, when only the dataset changes, i.e., the query

workload is stable, a key concern is which ground truth cardinality labels to re-obtain to

keep costs small when getting fresh training pairs. When the predicate workload changes

and only limited examples are available, a key concern is how to generate more examples

that mimic the new workload. With the UDA, we take an initial stab at two important

questions: (1) when or how often should the model be updated; (2) how to use examples

that have possibly inaccurate ground truth and are possibly no longer representative of the

arrival predicate workload.

With the various UDA decoders mentioned in Chapter 4, we choose to use decoders

for Generative Adversarial Network (GAN) [42, 196, 197]: a generative decoder aims to

synthesize examples that are indistinguishable from the observed new predicates, and an

adversarial discriminative decoder aims to distinguish the synthetic samples from actually

observed samples. We also include a picker (i.e., a special regression decoder) that predicts

which input queries are more valuable to update the CE model.

Warper takes a trained CE model and a new set of queries as input. It identifies the



102

nature of the underway drift, learns to generate additional queries when necessary, and

updates the CE model. The output of Warper is an improved CE model for the new data

distribution. Notably, Warper is agnostic to and uses the underlying CE model as a black

box (e.g., the model can be LM [191], or MSCN [192]). Warper does not modify the model’s

structure and hyper-parameters directly, but it generates predicates for the model to learn.

Improvements accrue from generating and labeling useful examples to adapt the CE model

quickly.

We are unaware of any prior work that effectively adapts learned database models to

data and workload drifts. In our experiments on a typical database server without GPU,

Warper speeds up model adaptation by many times over solutions from the ML literature

while using < 1% extra CPU utilization (details in 8.3). Warper incorporates different

learned components to handle different drifts and generates synthetic queries only when

necessary. Finally, we show that faster adaptation translates query performance gains by

injecting cardinality estimates into a production query optimizer.

Contributions of this chapter are as follows:

• We demonstrate how low-resource data and data drifts can affect trained ML models.

• Based on the UDA framework, we built the Warper system, which collaborates with

an existing CE model in a non-invasive manner and accelerates its adaptation to new

data and workload.

• Experiments show that Warper offers a worthwhile cost-speedup tradeoff; at a small

cost, Warper adapts much faster than fine-tuning and other baselines. Warper also

generalizes to different CE models and handles a broad scope of data.

8.2 Architecture Design for Adaptation

Warper adapts to drifts periodically. At each period where zero, one, or more kinds of drifts

may happen, Warper can detect the type of drift (as shown in Table 8.1) that is underway
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and adapts using the following strategies. To extend data adaptation ability to any kinds of

black-box machine learning model, Warper takes a CE model M as an additional component

in the UDA system.

• gen: When there are inadequate new queries to update M, Warper synthesizes addi-

tional queries that mimic the new workload.

• pick: When labeling cannot keep up or has high costs, Warper conserves budget by

carefully picking useful queries to annotate.

• update: Warper updates1 M with labeled queries.

Examples. (1) When workload drifts, new queries are inadequate and annotation is slow

(c2+c3 combined), Warper generates additional queries and picks which among them to

annotate. (2) With adequate labeled queries (c4), Warper directly updates M.

Drift
Mitigations in Warper

Note
gen? pick? update?

c1 Data × ✓ ✓ Unchanged workload, slow labeling.

c2 Wkld ✓ ✓ ✓ Inadequate incoming queries.

c3 Wkld × ✓ ✓ Slow labeling, can happen with c2.

c4 Wkld × × ✓ Adequate queries with labels.

Table 8.1: Individual data and workload (wkld) drifts and low-resource data adaptation

strategies. Complex cases are combinations of individual drifts.

System architecture, shown in Figure 8.1, has four key components. Here we denote

Itrain as the original training workload (i.e., a fixed set of queries) that was used to build M.

• The query pool maintains tuples of (q, gt, z, l, l′, s′), in which q is a predicate with

ground truth cardinality gt, l denotes the source of the predicate which can be a prior

1Fine-tune or re-train, depending on M; see 8.2.2.



104

Model 
M

Annotator

A
Encoder ℇ

Generator 𝐷𝑔𝑒𝑛 Discriminator 𝐷𝑑𝑖𝑠

Picker 𝐷𝑝𝑖𝑐𝑘𝑒𝑟

Query Pool
{(q, gt, z, 𝑙, 𝑙′, 𝑠′)}

Warper

update

gt

q

External modules

Figure 8.1: Architecture of the Warper system.

training workload, the new workload or synthesized (l = train, new, gen) and the

other parameters are defined next.

• GAN decoders contains the generative decoder Dgen and the discriminative decoder

Ddis; together, they emit synthetic queries. l′ is Ddis’s prediction of the predicate

source, and s′ is the confidence score.

• The picker Dpicker, as a special regression decoder, borrows ideas from active learning

[198] and performs a weighted sampling over a given set of predicates.

• E , as the versatile encoder, can embed predicates q into a different space z which other

components rely on.

• There are two external modules here that Warper is agnostic to: (1) the CE model

M, short for MX,D,y, is the previously trained model that Warper aims to improve and

Warper need not know its structure. (2) The annotator A computes ground truth gt

for a query predicate q and can be a DBMS query or custom code.

Unlike previous chapters’ medical imaging and behavioral analyses applications, where
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only human experts can annotate newly acquired data samples, the DBMS system can run

brute force searches to annotate ground truths autonomously for novel data.

8.2.1 Detect, identify, and adapt to drifts

Detect drifts: Prior learned database components use evaluation feedback [199] or blindly

update periodically whenever enough new queries are available [191]. Warper uses evaluation

feedback as follows: det drft triggers when the evaluation error of the current CE model

on the newly arrived queries exceeds by more than a threshold π beyond the error observed

during training. Thus, Warper adapts when drifts cause model accuracy to degrade. We

discuss further details, caveats, and corner cases in 8.2.4. If no drift is detected, Warper

simply uses the current model. The det drft trigger is simple and easy to implement

efficiently.

Identify drift modes: Each det drft call also characterizes the drift that is underway

as one of the cases in Table 8.1 which we call the mode flag; thus mode can indicate a data

drift c1 and/or a workload drift {c2,c3,c4}. Note that the flag has multiple bits, and more

than one kind of drift may occur at a time.

Data drifts. In data drifts, the cardinality labels for all queries (including those from

Itrain) may be outdated. To check for data drift from D to D′, we use different measures,

including (1) counting the fraction of rows that are new or have changed since the model

was last trained and (2) measuring the change in ground truth cardinality for a few canary

predicates. A data drift sets the c1 bit in the mode flag. For data drifts, we must re-obtain

cardinality labels.

Workload drifts. We identify workload drifts as follows: (1) c2 denotes the case when

newly arrived queries are inadequate; that is, the number of new queries available (nt) is

below γ the number of annotated queries necessary to train a robust CE model. We estimate

γ offline based on the training size when the accuracy of M stabilizes and tune γ online based

on evaluation feedback; that is, we use the number of examples at which the error converges

in offline training and adjust γ based on the evaluation error during adaptation. (2) c3
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Algorithm 3: Adapting Data Shifts in Database System: One Invocation

Input: Newly arrived {⟨q, gt⟩}, drift mode from det drft, M,Dgen,Ddis, E from the

previous invocation.

Output: Updated CE model M and internal models Dgen,Ddis, E in UDA.

pool.append({⟨q, gt, l=new⟩})

if c1, c2, c3 ∈ mode then

if c2 ∈ mode then

while ni −− do

qgen ← {gen(Dgen, E , pool, ns)} ; // generate ns synthetic queries

update MultiTask( Dgen,Ddis, E , pool, qgen ) ; // see subsection 8.2.3

end

pool.append({⟨qgen, l=gen⟩});
else

update AutoEncoder(Dgen, E , pool) ; // see subsection 8.2.3

end

anno(pool.pick(E , mode, np)) ; // update gt for np queries

end

M← update(M, pool) ; // update the underlying CE model M

.
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denotes the case when not enough queries have ground truth labels: na < γ; this can happen

because computing the labels is too slow or too expensive or when a query optimizer has

what-if queries but lacks ground truth labels [200]. (3) c4 occurs when both queries and

ground truth are adequate: nt > γ, na > γ. Warper is robust to inaccuracies in estimating

γ since the drift type detection repeats in each period; Warper also uses a form of early

stopping to reduce unnecessary resource usage. When there are limited queries to test the

CE model, the workload may have already drifted, or the queries may be outliers from the

previous distribution. Conservatively, our implementation flags this case to be a workload

drift since that lets Warper react quickly, and false positives can be identified and addressed

in subsequent periods.

Adapting to individual drifts. Algorithm 3 further fleshes out the data adaptation

actions. Warper injects newly arrived predicates into the query pool, discerns the kind of

drift, if any, updates the generative decoder and discriminative decoder if synthetic queries

are needed (c2). For c1, c2 and c3, Warper updates the encoder and picks the queries to

use for training and annotation. Finally, Warper updates the CE model using predicates

and labels from the pool for all four cases. We describe details of the modular calls, e.g., E

for embed() and Dgen for gen() in subsection 8.2.2 and 8.2.3. It is easy to see that many calls

can be parallelized.

(a) (b) (c)

Time

Figure 8.2: Top: different colored boxes show different kinds of drifts. Bottom: we show

boxes whenever Warper adapts the CE model; note that Warper periodically evaluates if the

model needs to be adapted and handles different kinds of drifts in a unified manner.

Adapting to complex drifts. When a drift discerns multiple modes, i.e., mode =

c1|c2, c2|c3 and so on, Warper combines the mitigation strategies described here; Alg. 3
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is capable of handling any combination of drifts. For continuous drifts, as discussed earlier,

Warper repeats the drift detection and adapts periodically (e.g., in each x-tick in Figure

8.2). The same adaptation strategy is used since Alg. 3 already consolidates joint cases.

8.2.2 Using Warper Components

We describe in detail the design and implementation of individual modules used in Warper

as shown in Figure 8.1 and Alg. 3.

The query pool is an in-memory data structure that maintains queries and their labels

in {(q, gt, z, l, l′, s′}) tuples. Warper initializes the query pool with Itrain from the original

training workload. Each (q, gt) tuple from Itrain creates a record in the query pool with

empty z, l′, s′ and l = train. For each adaptation step that calls Alg. 3, queries from the

new workload along with their cardinality labels (if available) are injected into the query

pool with l = new. The generative decoder Dgen, when necessary, generates and injects new

records qgen into the query pool with l = gen and gt=-1. Warper fills empty fields using

different components (A, E and Ddis).

The CE Model M is used as a black box and predicts cardinality given a query predicate:

q→ M→ card. The model exposes the update() API, which either re-trains or fine-tunes

the model given a set of training examples {q, gt} from the query pool. Warper aims to

improve the CE model without needing to know the model design2. Re-trains or fine-tunes

depend on individual models. For example, neural network models are iteratively trained

and can be fine-tuned, while tree-based models must be re-trained. The initial M input

to Warper is trained offline using {(q, gt)} ∈ Itrain. Featurization of q also depends on

the specific model; for example in LM [191], q = {low1, .., lowd, high1, .., highd} is a vector

containing low and high range checks of the query predicate. Such featurization is used

among different Warper modules and hence Warper simply reuses the featurization of M.

2To update the CE model requires knowing the input featurization and update() even without Warper ,
so we do not consider these as the model design. Instead, we refer to model design to model structures
and hyperparameters
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Layer Versatile Encoder E Generative Decoder Dgen Discriminative Decoder Ddis

1 Fully Conn. 128 Fully Conn. 128 Fully Conn. 3

2 Leaky ReLU activation Leaky ReLU activation

3 Fully Conn. 128 Fully Conn. 128

4 Leaky ReLU activation Leaky ReLU activation

5 Fully Conn. 128 Fully Conn. 128

6 Leaky ReLU activation Leaky ReLU activation

7 Fully Conn. |z| Fully Conn. m

Table 8.2: Specifications of the learned UDA modules. |z|: the embedding size. m: input

size to M.

The versatile encoder E , which can calculates embedding (aka, latent vector) from

input data sample, is learned to transform a query predicate into a compact representation:

embed(q) : q → E → z.

Recall that Warper is agnostic to the CE model and each may use a different featurization,

Warper leverages learned encoder of query predicates to decouple different components (i.e.,

Dgen,Ddis,Dpicker) from the featurization used by M. We found that using predicate em-

beddings improves the performance of subsequent Warper modules. In our implementation,

embed() uses the ground truth labels (i.e., concatenate to q) whenever they are available

and up-to-date. Table 8.2 illustrates the model; embeddings need to be updated in each

invocation, and the existing one needs to be recomputed.

The Generative decoder Dgen synthesizes new query predicates using the predicate

embeddings in the pool:

gen(q) : z+ ϵ→ Dgen → qgen,

where ϵ ∼ N(0, σ2) is a random Gaussian noise with σ that equals to the standard deviation

of z, the embedding of the predicate previously seen. Dgen is a simple NN as shown in Table

8.2. Whereas prior generative methods often use random seeds ϵ as input [42], we find that
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generating from z + ϵ is more likely to resemble the new workload. Dgen is trained together

with the discriminative decoder Ddis to formulate a GAN – details follow in 8.2.3.

The discriminative decoder Ddis is another NN that takes a predicate embedding as

input and predicts whether a predicate resembles the training, new or generated workload:

desc(q) : z→ Ddis → l′ ∈ {gen, new, train}, s′.

The Picker Dpicker uses pick(n) to select n queries from the pool; it finds records in the

pool that can be more useful to the model M and thus reduces the annotation cost. There

are two use cases of Dpicker as shown in Alg. 3 and both diversify the selection based on the

available information in different drift cases.

• For drift c2 when Ddis is used, Dpicker performs a weighted sampling with replacement

from all the records in the pool with l′ = new based on their confidence score s′; more

adversarial queries can be picked hence.

• For drift c1 and c3 in which only the picker is used, we apply a sampling stratified

by the CE error. Specifically, we first cluster all records in the pool with cardinality

labels annotated in the previous invocation into k buckets; the clustering is based on

the evaluation error when running query predicates through M. Next, for each new

query without cardinality labels, we assign it to one of the buckets based on k-NN

upon z. Finally, a stratified sampling with replacement picks records among different

cluster buckets. Our simple solutions diversify the choices and pick more high-error

queries.

8.2.3 Training Warper Components

There are three components in Warper that are learned: the versatile encoder E , the

generative decoder Dgen, and the discriminative decoder Ddis. As discussed in Chapter

4, the training process is an real-time and end-to-end process, which is referred as the

update AutoEncoder() and the update MultiTask() function in Algorithm 3.
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The update AutoEncoder() function follows the training strategy in reconstruction de-

coders. The update MultiTask() function follows Algorithm 1 to update the versatile en-

coder, the generative decoder, the discriminative decoder, and the picker (i.e., regression

decoder).

8.2.4 Robustness in Warper

In addition to the discussions in Chapter 4, we note a few design considerations, caveats,

and corner cases here.

Early stop in Warper . We use the accuracy gain of M after each adaptation step

as the stopping criteria; once the gain is less than a small threshold, Warper directly uses

the previous CE model unless a larger drift is observed in the future. This strategy saves

computation resources because possible improvements are already minor at such a moment.

Early stopping also adds robustness to inaccurate drift type identification.

Robustness and fall back options in Warper are as follows.

Drift detections: (1) False negatives - in a drift when det drft does not trigger (i.e., the

accuracy gap of the drift is minor or even negative), Warper uses the existing CE model, and

no action is needed because empirically there is small accuracy degrade already. (2) False

positives, i.e., when there is a large accuracy gap but no drift, is practically impossible.

Drift type identifications. For data drifts, the underlying database system should provide

reliable signals. Still, in the event of faulty telemetry: (1) False positives - the bottom line

is to recompute ground truth and Warper falls back to prior CE solutions [191], which has

no negative impact on the model accuracy. (2) False negatives - this is the same as FN in

drift detection.

Adaptation intervals and outliers from the new workload. Since Warper runs indepen-

dently to nt – the number of incoming queries available for each invocation, it is also robust

to the adaptation intervals chosen by the users. Indeed, when nt is small, using a mean error

estimation for M brings in uncertainty for a real workload drift or outliers in the incoming

queries, which in turn result in inaccurate control decisions. However, by the early stop and
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other mechanisms discussed above, Warper corrects itself when arrived queries are adequate.

Choosing a large adaptation interval, as shown by the yellow box in Figure 8.2 (a), may

cause delayed drift detection. Since det drft has a small overhead, we use frequent Warper

invocations in practice. Besides, Figure 8.2 (c) shows an example of early stop.

8.3 Experiments and Results

We evaluate Warper against state-of-the-art adaptation solutions on a wide scope of drifts.

Recall from 8.2.1 that Warper adapts periodically to complex and continuous drifts. We

also show that faster adaptation translates to query plan improvements. The goals of this

section is to show: When adapting different CE models to different types of individual drifts,

Warper outperforms various baselines; Warper has a small CPU cost (e.g., about 1% on a

typical database server) and adapts faster, reaching a similar accuracy in shorter time. For

more join queries and ablation studies, we refer readers to the full work [70].

8.3.1 Can Warper help to mitigate drifts?

Datasets. In our experiments, we use the datasets shown in Table 8.3. These datasets have

a wide variety in terms of row and column counts, column types, and distinctness and have

been used in prior CE solutions [191, 201]. Further, we leverage the IMDB dataset [202] to

evaluate adapting a join CE model.

Table Name
Cols Rows Distinct count

Real Cat. n Min/Medium/Max

Higgs 28 0 11M 3/6.7K/290K

PRSA 16 2 430K 5/645/35K

Poker 0 11 1M 4/10/13

Table 8.3: Datasets for evaluation in experiments. Cat.: categorical.
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Method to generate {low, high} predicates for column C.

w1 Draw from r(C) uniformly at random.

w2 Draw from a logarithmic transform of r(C).

w3 Equal to a sampled row plus a random width in r(C)

w4 Equal to min(C),max(C) from a sample of k rows.

w5 Equal to a stratified sample row by frequency plus a random width in r(C)

Table 8.4: Methods to generate workloads. r(C) denote the value range in column C.

Workloads. We have not identified public datasets with realistic drifts. As shown in

Table 8.4, we use five methods to generate query predicates which have been applied in [191,

203, 204] to evaluate CE solutions or are simple modifications to existing methods. For

example, LM [191] used a mixture of w1+3 in their studies. Using a large set of workload

distributions enables us to better evaluate the generalizability of various adpatation methods.

Figure 8.5 demonstrates some workload visualizations using the PCA method [11, 12].

w34 w125 w35 w124 w5 w4

Figure 8.3: Visualizing some workloads on PRSA in our experiments.

Metrics. We measure the following key metrics:

Accuracy : Let g, ĝ be the estimated and actual cardinalities, for each predicate, we
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measure the q-error: qθ(g, ĝ) = max(max(g,θ)
max(ĝ,θ)

, max(ĝ,θ)
max(g,θ)

). This is a widely used metric [191, 192,

193] so that lower q-error indicates better accuracy and 1 is perfect accuracy; To prevent

numeric error, we use θ = 10 to follow [191]. For each test relation, we measure the geometric

mean of qθ over all predicates (GMQ) also to follow these prior work.

Test period and query arrival rate. How fast an adaptation solution mitigates a drift

crucially depends on the drift period and the query arrival rate being tested. Hence, we

leverage a fixed test time period of 30 mins in our experiments.

Computational overhead. We measure the cost of Warper to build and apply different

learned components and report the latency aggregated in one thread. For Warper and

various baselines, the costs consist of the time of data generation, data annotation, and

model update. We report average CPU utilization on a desktop-grade database server with

12 cores.

Relative adaptation speedup, agnostic to the test period and query arrival rate, evaluates

the effectiveness of a model adaptation solution. For a CE model, accuracy improvements

with different numbers of training examples are near monotonic, as shown in Figure E.1. Let

α, β, respectively, be the GMQ before and after the drift; we define ∆(A, λ) as the number

of queries required for method A to reach an accuracy of β + λ(α− β).

We use a relative speedup ∆(FT, λ)/∆(A, λ) by comparing the numbers of queries re-

quired from the new workload for method A relative to that for fine-tuning (FT).We denote

∆.5, ∆.8 and ∆1 for short of ∆(FT, λ)/∆(A, λ) where λ ∈ [.5, .8, 1].

Drift metrics : To measure the severity of a drift, we leverage blind and intrinsic metrics

from the active learning literature [205].

δm: Agnostic to the underlying data or workload drifts, δm captures the accuracy gap be-

tween an unmodified model and the model trained exclusively on the new data and workload.

Such metric is used in det drft (8.2.1) and early stop 8.2.4.

δjs: We leverage a discrete Jensen-Shannon Divergence [206] to measure the intrinsic

distance between two workloads. The δjs metric produces [0, 1] in which 0 indicates identical

distributions. We use k = 10 and m = 3 in our experiments.
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We also compare UDA (Warper) with other baseline methods: data augmentation (AUG),

hard example mining (HEM), and mixture model (MIX).

CE models used in Warper . We show results with three ML-based estimators in our

experiments.

LM [191] models take a range predicate as input and predict its cardinality. The input q =

{low1, .., lowd, high1, .., highd} represents a conjunction of range predicates on d columns.

We use the min and max value of a column to represent one sided predicates. The model is

about 64KB in size. In our experiments, we use two variants of LM with MLPs and GBTs,

namely LM-mlp and LM-gbt. These two models have the same input and output; however,

LM-mlp updates the model by fine-tuning while LM-gbt uses re-training. MLP updates with

a batch size of 32 and a learning rate of 1e−3, while GBT uses a learning rate of 1e−2.
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Figure 8.4: Comparison of handling workload drifts (c2) using LM-MLP. We show GMQ on the

hold-out test set at different adaption steps with one new query arriving every five seconds.

Table E.1a shows the relative speedups ∆. We plot first and third quarters on the error bar.

MSCN [192] learns a more complex model which uses query predicates, join conditions,

and bitmaps as input. The model consists of a pooling layer on each input and an MLP,

which produces the cardinality estimates. We use a simplified version here for single-table

CE by removing the join condition and bitmap inputs. We use the same predicates and

ground truth as LM. MSCN models are 64KB in size and updated using fine-tuning. We use

PyTorch for implementation with a batch size of 32 and a learning rate of 1e−3.

Evaluation method. We evaluate Warper and the baselines with different data and
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Dataset PRSA Poker HIGGS

Method AUG HEM UDA AUG HEM UDA AUG HEM UDA

Annotation cost* 0.01s/query 0.03s/query 0.39s/query

Model building cost* - 1s 52.1s - 1s 60.5s - 1s 58.5s

Avg 10 min @ 10 q/s 0.27% 0.27% 1.0% 0.74% 0.75% 1.58% 9.95% 9.96% 10.77%

CPU 10 min @ 1 q/s 0.03% 0.03% 0.75% 0.07% 0.07% 0.90% 0.95% 0.96% 1.77%

Usage 30 min @ .2 q/s 0.005% 0.01% 0.25% 0.015% 0.019% 0.29% 0.20% 0.20% 0.47%

Table 8.5: We show additional costs to adapt a CE model. *: Costs in a single thread. Given

different arrival rates of new queries, FT requires a minimum of 10-30 mins to fully adapt.

Using the same amount of time and newly arrived queries and small CPU in extra, UDA

achieves better accuracy than the baselines.

workload drifts c1-3 in Table 8.1, and the same CE model is used in all methods. For c4,

Warper falls back to FT (8.2.1) and we do not evaluate explicitly. We run each experiment 10

times and report aggregated metrics, including error and adaptation efficiency. We evaluate

each adaptation method at 0,20%,..,100% of our test period. nt is then computed relative

to time spent and query arrival rate. Warper uses a fixed np = 1K in the picker; AUG and

HEM randomly sample the same number of queries from different distributions to match

Warper .

8.3.1.1 Results and discussions

We first examine workload drift c2 in which all Warper components are used, whereas other

cases use only a subset (see 8.2). Evaluations of other CE models, types of drift and workload

changes will be discussed in 8.3.1.2.

Adaptation speedups. Table E.1a demonstrates model adaptation on three datasets

with LM-mlp, while Figure 8.4 shows the progress at different adaptation steps. Our obser-

vations are two-fold.
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First, we note that ∆ shown here is already agnostic to and normalized by the query

arrival rate. When more queries from the new workload arrive, all adaptation methods

improve the accuracy and Warper adapt faster than other baselines. We observe large

speedups provided by Warper on all test datasets. With more accuracy required, the gains

are less in general; e.g., ∆1 decreases to 3.1× on the PRSA dataset. The last bit of accuracy

improvements may have to come from the real incoming queries.

Next, MIX occasionally outperforms FT slightly without additional queries used in the

model update; HEM and AUG perform better with additional queries but are not as good as

Warper . These adaptation solutions are ad-hoc and often require careful heuristics design to

generate new queries. In practical systems, the use cases of these baselines remain unclear.

Qualitative results. Figure 8.5 demonstrates different sets of queries using the PCA

visualization. As the adaptation proceeds over time, we find that the generated (in green)

and picked queries (in red) in general follow the incoming query distribution (in orange). A

small portion of generated queries near the middle of the diagonal do not follow either old

or new distributions; we found that these queries help the adaptation.

Adaptation costs. Here, we measure the costs incurred by Warper . Table 8.5 breaks

down the costs of Warper and alternatives at various query arrival rates. Note that all of

these methods update the CE model, which takes a few seconds. FT and MIX do not incur

any additional cost, unlike the other methods.

At each adaptation step, Warper ’s costs contain updates to internal components, gen-

erating synthetic queries when needed which takes less than 1 second, and computing the

ground truth. To adapt a CE model to the workload drift, Warper incurs a compute over-

head of about 0.25% to 10.8% CPU usage depending on the query arrival rate. For any

arrival rate, a system can choose to (1) adapt immediately, which has the highest instanta-

neous CPU usage, or (2) spread the adaptation cost over a longer duration. Furthermore,

these numbers are from an unoptimized prototype in python; cost reduction optimizations

could be helpful in future work. Nevertheless, the costs are already small and insignificant

in comparison to the alternatives and do not hold back Warper from keeping up with all the
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Figure 8.5: Visualization of adaption on the PRSA dataset with c2 drift and workload

w12/345 at different time (t).

cases in Table 8.5.

Note that when new queries arrive at a higher rate (e.g., 1K q/s in 10 mins) than the

cases shown in Table 8.5, Warper cannot keep up (CPU usage > 100%). Warper either

spreads the adaptation in a longer period uese c3 or c4 mode by det drft (8.2).

AUG and HEM annotate additional queries and are cheaper than Warper but do not

adapt as fast as Warper . FT and MIX do not use additional queries and are the most

efficient solutions; however, they do not offer fast adaptation as Warper and other baselines.

8.3.1.2 Generalization in Warper

Beyond the c2 data shift case shown above, we are interested in how Warper can generalize

to other types of drifts and workload changes.

Adapting to c1 Drift: In a data drift c1, all labels from the training set Itrain become

outdated. In this data shifting scenario, Warper picks useful queries to label (recall the picker

described in 8.2.2) and updates the CE model. Our experiments similarly run periodically;

we compare Warper with FT that fine-tunes M by randomly picking the same numbers of

queries to annotate from the training set. Table E.1b in the Appendix demonstrates the

results. At different accuracy targets, we observe Warper has various speedups due to saved
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annotations.

Adapting to c3 Drift: In a workload drift c3, the newly arrived queries are not com-

panied with gt labels. The Warper picker works similarly as in c1: it picks and annotates

queries from the newly arrived queries. At each adaptation step, we compare Warper against

FT, which uniformly picks the same amount of queries at random for annotation. Table E.1c

in the Appendix demonstrates the results, and Warper adapts faster with a fixed annotation

budget compared with FT on randomly annotated samples.

In both cases above, Warper only uses the picker; the overhead caused by Warper is only

updating the learned modules and is small.

Adapting for different workload changes. We consider the case of c2 but vary the

training and new workloads as illustrated in Table E.2. As shown in the results, different

workload distributions exhibit different adaptation speedups with median ∆0.5,∆0.8,∆1 being

4.7, 4.6 and 3.7. Notably, speedups are less significant when the accuracy gap is already

small (e.g., δm ≤ 0.2). The accuracy gap in drifts δm can be uncorrelated with the intrinsic

distribution difference δjs, but both metrics are useful to reveal the nature of observed data

shifts. CE models that are explainable remain an open question among learned database

components. Figure E.2 further demonstrates the adaptation progress on various datasets

and query distributions. To this end, we consider Warper useful and robust to different

distributions of workload drift.

Adapting for join CE. We also examined join cardinality estimation with the MSCN

model on the IMDB dataset with an arrival rate of one new query per minute; other settings

remain unchanged as above. We randomly generated 16K join queries to pre-train the MSCN

estimator with a 128K storage budget. Warper achieved ∆0.5,∆0.8 and ∆1.0 at 2.1x, 2.8x,

1.1x. That said, we consider Warper generic and agnostic to various CE models that need

to be adapted.

Remark. It is clear that Warper offers a reasonable cost-speed tradeoff and can be a

valuable alternative to FT when the cost overhead is affordable. In all test cases and datasets

(Table E.1 and Table E.2 in the Appendix), we observe that Warper performs no worse than
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FT (∆ ≥ 1), and applying Warper is less likely to cause degradation.

8.4 Summary

In this chapter, we forked the UDA framework and created the Warper system to improve

previously-trained cardinality estimators in the context of data and workload drifts. The key

ideas include generating queries from a generative decoder and picking among the available

data samples to annotate with a regression decoder. We show that with small computational

costs, UDA has good applicability and accelerates model adaptation to data shifts with only

a little computation resource.
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Chapter 9

DISCUSSION

As an emerging field, deep learning faces novel and challenging problems every day. So,

adapting to the constantly changing world is critical in machine learning deployment. This

study does not aim to solve all adaptation problems simultaneously, but we advocate unifying

separated data adaptation subareas into a coherent scheme. Our applications of the UDA

framework, with various modalities, tasks, backbone models, show promising results to data

adaptation in different adaption scenarios. This chapter discusses the limitations and future

directions for data adaptation in neural networks.

9.1 Limitations

We admit that this study has several limitations: (1) the framework is not fully automated

and still requires customization, (2) we did not cover other popular domains, such as natural

language processing and multi-modality learning, (3) this work does not provide strong

theoretical guarantees on adaptation performance. Although out of the scope of this study,

these critical issues are noteworthy for future researchers.

Our framework can already facilitate many adaptation applications autonomously, and we

customized and showcased it for challenging real-world problems. For instance, we included

an R-CNN model without delegating the versatile encoder for medical imaging analyses; we

connected an autonomous ground truth annotator to a database optimization application –

nevertheless, the UDA framework can quickly adapt to standard images and signals without

modification. Customizations in Chapter 5, 6, 7, and 8 showed the UDA’s flexibility for

novel problems.

As an exploratory work to unify data adaptation, the UDA framework does not aim to
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compete with carefully developed industrial services. This project is not as influential as

other open-source projects1 either, because we focus on solving novel problems for underrep-

resented datasets rather than well-known public benchmarks. On the other hand, the UDA

absorbed many practical designs from other projects so that researchers can adopt UDA

quickly. Engineers can also integrate the UDA’s design into AutoML in the future.

We showed that the UDA could adapt from source datasets and newly incoming data

in computer vision, signal processing, medical analyses, behavior analyses, and database

optimization. Many other domains, such as natural language processing and recommendation

systems, are not fully covered in this study. However, data adaptation concepts, as discussed

in Chapter 3, are universal for different domains. The UDA framework is also capable

of handling multiple encoders where each encoder can learn representations from different

modalities, and a multi-encoder design can solve more complex problems. These applications

are not discussed here because of time and space constraints.

From a theoretical perspective, we introduced two different optimization algorithms to

learn various tasks jointly in Chapter 4. We have defined the training loss as L, but the

model’s generalizability to the target task is understudied in this work. Some recent theo-

retical studies explored linear probing, fine-tuning, and prompt-tuning for data adaptation,

and we refer readers to the more comprehensive survey on adapting foundation models [7].

Nevertheless, strong theoretical guarantees on the adaptation loss Ladapt are still missing.

Future work is needed to advance theoretical analyses so that scientists can create better

models and algorithms.

Even if some readers might criticize task unification as a hodgepodge of various learning

algorithms, integrating different adaptation methodologies is necessary for the robustness and

deployment of deep learning models. While researchers have more challenges than solutions

for neural network adaptation nowadays, the UDA can be a small but non-trivial step in this

extensive unification process.

1For instance, Detectron2, fastText
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9.2 Federated Learning and Decentralized Learning: Data Privacy

Many machine learning applications rely on collected human subject data, and the UDA

framework could reduce the burden to acquire necessary data and labels for new deep learning

applications in the future. Collecting fewer data could also help protect privacy and increase

data security. We advocate responsible and human-centered deployments of these deep

learning technologies.

While most organizations have strict policies for their datasets, adding more data could

help build a more generalizable deep learning model. To promote the privacy and enlarge-

ment of training datasets at the same time, researchers can extend the UDA framework with

federated learning [207, 208] and decentralized learning [209]. The training Algorithm 1 and

Algorithm 2 can calculate loss from different datasets, and the UDA can learn distributedly

from different machines and organizations.

For instance, in the federated learning scenario, a centralized server only stores a versatile

encoder rather than any data. Each member organization can download the encoder, train

on its private dataset, and then upload the updated gradient (rather than the data) to the

central server for loss aggregation. Moreover, each organization has a different decoder tai-

lored to their small datasets, which can resolve the discrepancies in data collection protocol

(e.g., different machine brands, different staining habits). This method is compliant with

HIPAA requirements, and many cellphone applications already use this method for spell cor-

rection, speech recognition, and face recognition. In the future, researchers can perform more

theoretical analyses and scrutinize the underlying encoder to ensure the high preservation of

data privacy.

In the decentralized learning scenario, each organization stores the versatile encoder with

consensuses parameters. After calculating losses from its dataset, each organization can

notify other organizations about the encoder’s gradient to update the versatile model con-

sistently across the globe. Compared to the federated learning process, this decentralized

method can help avoid monopolistic degeneracies and man-in-the-middle attacks.
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9.3 Diversity, Equality, Fairness, and Bias

Deep learning models usually perform well on unseen data but might extrapolate unrea-

sonably in some scenarios. When the data size is small, models would have low confidence

and perform poorly for underrepresented groups because of the lack of statistical power. As

machine learning practitioners, we should create fair platforms for people from different back-

grounds, regardless of skin color, age, gender, sex, sexual orientation, income, occupation,

abilities, and other traits.

Recently, some researchers [210] found convolutional neural networks can identify pa-

tients’ race from chest X-ray images, whereas human doctors could not accomplish such a

task. Later, the authors concluded that deep learning models might worsen racial dispar-

ities: if a model “secretly used its knowledge of self-reported race to misclassify all black

patients, radiologists would not be able to tell.” We agree with [210] that future studies

should report deep learning models’ performances for each demographic subgroup, and we

acknowledge that the concern for malicious deep learning models is valid. However, some

significant distinctions exist between correlation and causation. The extracted features could

indirectly correlate with race and gender when the model learns about diagnostic classifica-

tion. These robust feature encoding and data disentangling capabilities are the foundations

of transfer learning and adaptation methods. Similarly, based on Bayes’ theorem, human

experts – like unbalanced machine learning strategies – would use biological markers and

socio-demographical traits when making diagnostic decisions [5]. Equal data acquisition

protocols and model training processes could mitigate the inequality and bias dilemma.

Believing diversity could promote scientific advancements, we created deep learning mod-

els for minority groups when only a few resources (e.g., data and labels) were available. For

instance, the proposed adaptive affective computation tool could help identify facial expres-

sions for children with disabilities and disorders, removing technology barriers for special

populations and other underrepresented groups. The proposed adaptive eye-tracking tool

and adaptive cancer analysis tool could help clinicians and patients from developing regions
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with limited access to healthcare resources. Nevertheless, because of the severity of bias

in data-driven models, more comprehensive studies are still necessary to explore alternative

approaches for diversity, equality, and fairness.

Given theoretical limitations in current computer science technology, advocating for

bringing fairness to deep learning models is an urgent and challenging task. Improving pre-

dictive power and increasing fairness could have a symbiotic relationship, but more studies

are needed to create novel and practical strategies to solve these dilemmas.
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Chapter 10

CONCLUSIONS

Aiming to create a unified data adaptation framework for low-resource learning, we

proposed a unified framework, the UDA, that can perform supervised, unsupervised, self-

supervised, generative, and active learning to adapt to low-resource data. The versatile

encoder in the framework can project a data sample to an embedding vector for adaptation

and confidence estimation. Inspired by the prefrontal cortex, we gave the framework flexible

abilities to memorize prior source tasks, generate synthetic data, execute target tasks, and

determine confidence. These abilities, fulfilled by auxiliary decoders in the framework, allow

the encoder to learn data distributions and adapt data shifts more efficiently in low-resource

settings. The framework can also help researchers evaluate their datasets and annotate novel

data samples. We applied this framework to solve several challenging real-world problems,

including medical imaging, facial expression recognition, gaze estimation, signal analyses,

and database optimization.
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Appendix A

SUPPLEMENT FOR METHODS
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Figure A.1: A visualization for the optimization path in Algorithm 2: suppose k = 5 for

the inner loop steps, and solid red lines represent the gradient calculated for each inner-

loop update. Green and yellow lines represent the optimization path for decoding task 1

and decoding task 2. Dashed blue lines represent the difference between ϕ̃ and ϕ for each

iteration inside the outer loop. Solid and empty dots represent the weights before and after

the outer-loop update. The last figure overviews three outer-loop iterations. One limitation

of this meta-learning approach is the speed: the encoder needs to perform k inner updates for

each outer-loop update; hence, it is O(k) times slower than the MTL in the same condition.
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Appendix B

SUPPLEMENT FOR MEDICAL IMAGING SYSTEM

Figure B.1: The graphical user interface (GUI) to annotate duct instances: the

main panel (right-hand side) shows the input image and allows users to create bounding

box annotations. The bottom left side shows the binary tissue mask generated by the UDA

framework to guide the annotator. The top left section allows the annotator to load, select,

and save images and annotations. Filenames are removed in this visualization for privacy

concerns. This GUI is developed based on HTML and YOLO BBox Annotation Tool1.



153

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.2: Ductal segmentation testing result: each color represents one instance of

a duct in the biopsy. The top row shows four examples with satisfiable duct identification

results, and the bottom row shows four imperfect examples. Examples (e), (f), and (g)

have taken a single irregular and expanded duct and split it into multiple duct structures.

Cancerous cells have escaped from ducts in (h), and our system mistakenly marks a big

region (in red) as one duct.
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Figure B.3: Detection Results for Duct Instances: binary images are result from the semantic

segmentation decoder. Instance detection results are from Mask R-CNN. Green boxes are

true positives, and blue boxes are false positives.
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Appendix C

SUPPLEMENT FOR FACIAL EXPRESSION SYSTEM

Figure C.1: Sample Frame of a Visual Preference Stimulus in the iPad application. In the

image, we mosaic the actor’s eyes for privacy issues.
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Appendix D

SUPPLEMENT FOR EYE-TRACKING SYSTEM

10-Shot Accuracy Autism-Classification

10-w 100-w 1003-w Acc F1 AUC

All Tasks 0.65 0.48 0.31 0.80 0.88 0.83

No-RC 0.4 0.43 0.29 0.80 0.87 0.71

No-PC 0.56 0.47 0.31 0.76 0.85 0.83

No-FI 0.58 0.45 0.30 0.71 0.82 0.7

No-CL 0.33 0.37 0.26 0.76 0.84 0.80

Table D.1: Ablation for pre-train tasks. For the 10-shot supervised learning experiment with

MIT-1003 dataset, we evaluate the performance in 10-, 100-, 1003-way classification tasks.

For the Autism classification experiment, we evaluate the accuracy, F1, and AUC scores.
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Experiment Method 1-shot 3-shot 5-shot 10-shot

Supervised

C-VAE 0.23 0.18 0.19 0.34

No Pre-Train 0.21 0.22 0.28 0.30

Ours (UDA) 0.25 0.28 0.41 0.63

Metric-based

C-VAE 0.40 0.60 0.65 0.71

No Pre-Train 0.50 0.65 0.72 0.77

Ours (UDA) 0.52 0.70 0.73 0.79

(a) 10-way Classification

Experiment Method 1-shot 3-shot 5-shot 10-shot

Supervised

C-VAE 0.04 0.11 0.15 0.24

No Pre-Train 0.04 0.08 0.14 0.36

Ours (UDA) 0.06 0.14 0.32 0.44

Metric-based

C-VAE 0.16 0.36 0.41 0.47

No Pre-Train 0.12 0.28 0.31 0.39

Ours (UDA) 0.18 0.37 0.44 0.51

(b) 100-way Classification

Experiment Method 1-shot 3-shot 5-shot 10-shot

Supervised

C-VAE 0.01 0.04 0.08 0.14

No Pre-Train 0.01 0.05 0.15 0.30

Ours (UDA) 0.02 0.08 0.17 0.31

(c) 1003-way Classification with Supervised Learning. Metric-based meta-learning

is not available for this experiment because the meta-testing set would be empty.

Table D.2: Stimulus Prediction Experiment Testing Results for the MIT-1003 Experiment:

Learning from k-shot examples for each stimulus. We performed standard supervised learning

and metric-based meta-learning for different scenarios.
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Enc Block Para T
RC

Dist

PC

Dist

FI

AUC

CL

ACC

GRU 163k 4.62 4.06 6.38 0.80 0.85

RNN 55k 4.61 12.0 7.68 0.52 0.63

LSTM 217k 4.71 4.55 6.45 0.72 0.83

Transformer 343k 2.59 8.93 7.12 0.61 0.76

GRU (no Conv) 150k 7.68 4.35 6.38 0.80 0.84

Educated Guess 11.8 11.8 0.5 0.5

C-VAE with UDA 15k 1.08 8.18 6.54 0.65 0.79

Table D.3: Effects from different model backbones, where we use a 2-layer unit with 128

hidden neurons in each layer for these models. The number of trainable parameters (para)

in the encoder and the inference runtime (T) in milliseconds is reported. The Euclidean

distance (Dist), AUC score, and accuracy (ACC) are evaluated for the pre-tasks.
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Enc Block Para T
RC

Dist

PC

Dist

FI

AUC

CL

ACC

2 x 32 15k 4.65 5.46 6.50 0.71 0.81

2 x 64 46k 4.67 4.52 6.53 0.71 0.81

2 x 128 163k 4.62 4.06 6.38 0.80 0.85

2 x 256 620k 4.72 3.77 6.28 0.82 0.85

1 x 128 64k 2.50 4.89 6.39 0.75 0.83

2 x 128 163k 4.62 4.06 6.38 0.80 0.85

3 x 128 262k 7.02 3.52 6.30 0.84 0.86

4 x 128 361k 11.89 3.67 6.42 0.89 0.85

Table D.4: Effects from different model size. A GRU unit with a convolutional layer are used

across these experiments. The first column represents (the number of layers) x (the number

of neurons in each layer) for the GRU unit. The number of trainable parameters (param)

and inference run-time (T) in milliseconds are also reported.
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Appendix E

SUPPLEMENT FOR DATABASE MANAGEMENT SYSTEM
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Figure E.1: Visualizing the effect of workload drift on the performance of a simple query

using tables from TPC-H [211]; the predicate shown is drawn from distribution X which

changes to X’1; on the right, we see how the accuracy of cardinality estimates from [191]

and the query latency vary at different adaptation steps when new queries from X’ arrive

periodically.
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Figure E.2: We demonstrate adaptation in workload drift c2 using LM-MLP with training

and newly arrived workloads described in figure title, e.g., w1→ w3 indicates that the model

is trained on workload w1 and is tested when the workload drifts to w3. Red: Fine-tune.

Green: hard-example mining. Yellow: MIX approach. Blue: Ad-hoc AUG method. Purple:

Proposed UDA framework.
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Exp. Dataset Cs Wkld Model δm δjs ∆.5 ∆.8 ∆1

a.Wkld drift PRSA c2 w12/345 LM-mlp 2.4 0.31 7.4 4.8 3.1

(Figure 8.4) Poker c2 w12/345 LM-mlp 2.0 0.27 7.1 7.3 7.7

Higgs c2 w12/345 LM-mlp 12 0.60 3.8 3.7 3.5

b.Different PRSA c2 w12/345 LM-gbt 0.8 0.31 1.1 1.0 1.0

models Poker c2 w12/345 LM-gbt 1.3 0.27 1.0 3.5 6.8

Higgs c2 w12/345 LM-gbt 9.9 0.60 1.0 1.0 1.2

PRSA c2 w12/345 LM-ply 0.5 0.3 1.9 1.1 1.1

Poker c2 w12/345 LM-ply 1.7 0.3 1.0 1.0 1.1

Higgs c2 w12/345 LM-ply 6.1 0.6 1.0 4.0 1.5

PRSA c2 w12/345 LM-rbf 2.6 0.3 1.5 1.5 1.3

Poker c2 w12/345 LM-rbf 1.6 0.3 2.2 4.3 5.8

Higgs c2 w12/345 LM-rbf 11.5 0.6 1.2 1.3 1.2

PRSA c2 w12/345 MSCN 1.8 0.31 6.2 3.6 3.9

Poker c2 w12/345 MSCN 1.4 0.27 6.0 8.1 3.3

Higgs c2 w12/345 MSCN 9.6 0.6 2.5 5.2 3.2

c.Different PRSA c1 w1-5 LM-mlp 0.4 - 3.0 7.6 1.0

drifts Poker c1 w1-5 LM-mlp 0.9 - 1.3 1.1 1.5

Higgs c1 w1-5 LM-mlp 12 - 1.5 1.0 1.0

PRSA c3 w12/345 LM-mlp 2.1 0.31 1.1 1.1 1.0

Poker c3 w12/345 LM-mlp 1.9 0.27 1.4 1.4 1.2

Higgs c3 w12/345 LM-mlp 0.5 0.60 1.0 1.0 1.0

d.Join CE IMDB c2 w4/w1 MSCN 72 0.52 2.1 2.8 1.1

Table E.1: Warper with different CE models, drifts and workload distributions; results are

aggregated over 10 runs.
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Exp. Wkld δm δjs ∆.5 ∆.8 ∆1

d. Different w1/2 1.1 0.35 3.8 3.8 4.0

workload w1/3 16.0 0.43 3.2 4.4 6.2

w1/4 5.2 0.41 5.2 4.8 6.2

w2/3 13.7 0.32 7.9 5.5 4.2

w2/4 5.2 0.34 8.9 8.6 8.0

w5/3 14.7 0.30 4.7 5.7 3.4

w5/4 4.4 0.22 4.6 3.8 1.6

w34/125 0.1 0.28 1.3 1.5 1.5

w35/124 0.2 0.26 4.5 1.2 1.1

w125/34 9.2 0.25 12.7 12.1 1.4

Table E.2: Warper with different workload distributions on PRSA.

Query setting Executed as: Predicate on Latency gap

S1 - Buffer spill Single thread L 2.1×

S2 - Join type Single thread L,O 306×

S3 - Bitmap distr. Multi-thread L,O 5.3×

Table E.3: Queries used in this section. Latency gap indicates the max latency difference

between plans with accurate and inaccurate CE.
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Figure E.3: We show that faster model adaptation results in query performance gains in

three cases and also in continuous drifts.
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Figure E.4: Varying the NN hyperparameters in the encoder and generative decoder.

Dataset Warper P→rnd pick P→entropy G→AUG

∆0.8

PRSA 4.8 3.3 3.8 4.6

Poker 7.3 1.3 6.7 6.9

∆1

PRSA 3.1 2.0 3.2 3.2

Poker 7.7 1.0 1.6 6.9

Table E.4: Replacing learned Warper components with alternatives.
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Figure E.5: Trading compute for adaption speedup. We vary the number of generated queries

ng and show the speedups. n× indicates ng = n× nt generated.

Dataset PRSA Poker

ng 0.1× 0.3× 1× 3× 0.1× 0.3× 1× 3×

Anno. 1.2s 3.6s 12.1s 36.3s 3.2s 9.6s 31.9s 95.7s

Model const 52.2s (0.24% CPU usage) const 60.6s (0.28% CPU usage)

CPU 0.25% 0.26% 0.30% 0.41% 0.29% 0.33% 0.43% 0.72%

Table E.5: Trading compute for adaption speedup. We show the additional CPU utilization

when ng varies as multiplies of nt with an adaptation period 30min and one query arriving

per five seconds.


	List of Figures
	List of Tables
	Glossary
	Introduction
	Challenge: Data Scarcity
	Challenge: Data Shifting
	Definition: Low-Resource Learning
	Solution: A Unified Framework – UDA

	Information Encoding
	Information Encoding in the Human Brain
	Information Encoding in Signal Processing
	Information Encoding in Artificial Neurons
	Summary

	Learning and Adapting
	Adaptation in Humans: Executive Functioning Skills
	Adaptation in Machines: 
	Summary

	Methodology
	Overview
	Components of the UDA
	Simulations
	Algorithms and Theoretical Analyses
	Implementation and Engineering Details
	Summary

	Applications for Medical Imaging
	Dilemmas in Breast Cancer
	Related CAD Studies
	System for Breast Cancer Diagnosis
	Experiments and Results
	Discussion
	Summary

	Applications for Facial Expression Recognition
	Autism and Facial Expression
	Related Works in Affective Computing
	UDA for Affective Computing and ASD Classification
	Experiments and Results
	Summary

	Applications for Eye-Tracking
	Monitoring Machine Learning’s Confidence Toward Novel Data
	Learning Oculomotor Behaviors from Self-Supervision
	Summary

	Applications for Database Optimization
	Machine Learning-based Cardinality Estimation
	Architecture Design for Adaptation
	Experiments and Results
	Summary

	Discussion
	Limitations
	Federated Learning and Decentralized Learning: Data Privacy
	Diversity, Equality, Fairness, and Bias

	Conclusions
	Supplement for Methods
	Supplement for Medical Imaging System
	Supplement for Facial Expression System
	Supplement for Eye-Tracking System
	Supplement for Database Management System

