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ABSTRACT
Cardinality estimation (CE) aims for high accuracy, small
storage, fast building and low query answering latency. We
analyze the upper error bounds of random uniform sam-
pling for single-table CE and use them as the accuracy target
for machine learning (ML)-based CE. Our analysis indicates
that ML-based CE exhibits no Pareto advantage over ran-
dom uniform sampling but provides a tradeoff among the
metrics of interest. We outline such tradeoffs and point out
the scenarios when ML-based CE can be useful and when
sampling can help.

1. INTRODUCTION
Substantial prior work focused on cardinality estimation

(CE) of a given query predicate, which in turn enables vari-
ous database tasks such as costing query plans in optimizers
([2, 4, 3, 5, 10, 7, 18]). The state-of-the-art in practice is to
use histograms [14], sketches such as Count-Min and Hyper-
LogLog [5]. Recent work on Machine Learning (ML)-based
CE learns dataset-specific models to answer CE queries [11,
21, 16, 19, 8]. An ideal CE solution should build its data
structure and answer queries quickly with high accuracy.

Current ML-based CE solutions have shown gains in some
aspects but have not achieved a Pareto improvement over
simple alternatives such as random uniform sampling [20].
For example, DeepDB [11] and Naru [21] demonstrate promis-
ing accuracy but require large storage in MBs and building
latency in tens to a few hundred minutes; in contrast, sam-
pling has minor building overhead and may already provide
accurate estimates for some predicates at smaller storage.
ML is not a silver bullet to CE.

To better understand this, we analyze the error bounds
of random uniform sampling in Section 2. We compare dif-
ferent metrics-of-interest (storage, accuracy, building and
query latency) between ML-based methods and sampling in
Section 3. Our analyses show that random uniform sampling
already provides tight upper error bounds when the storage
is adequate or when predicates have high cardinality.
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When ML-based CE outperforms classic solutions is an
open question to the literature and database practitioners.
We point out the usefulness criteria for ML-based CE to
trade among the metrics of interest. Lastly, we describe in
Section 3.1 a simple but effective solution to use samples as
a gate before ML-based CE.

Nevertheless, the theoretical analyses in this paper show
single-table results. We defer analyses for CE over multiple
tables to [12]; we also refer the readers to [20] for empirical
study and comparisons of recent ML-based CE solutions.

2. BOUNDS OF RANDOM SAMPLING
To compare the accuracy of different CE methods, we

leverage the theoretical error bounds of random uniform
sampling. Following recent CE work [11, 21, 16, 8], we an-
alyze the Q-error to evaluate the estimation accuracy:

Q-error = max(
gt

pred
,
pred

gt
),

where pred is the predicted cardinality and gt is the ground
truth. There have been numerous bound analyses on ran-
dom uniform sampling in the last a few decades, but few
have covered the Q-error metric in the context of CE.

We introduce the problem setup in Section 2.1, analyze
random uniform sampling with replacement in Section 2.2,
and random uniform sampling without replacement in Sec-
tion 2.3. The error bounds will be used in Section 3 to
indicate when ML-based CE can be useful. Analyses with
detailed proofs can be found in our technical report [17].

2.1 Problem setup
Let t be a table with n rows and m columns, and t̂ be k

rows sampled uniformly at random from t with or without
replacement, where k ≤ n. Suppose a total of X = pn rows
from the table t satisfy a given predicate, where p ∈ [0, 1]
represents the probability that a row in the table satisfies
the predicate. Hence, X is the cardinality of the input query
predicate. Cardinality estimation, i.e., estimating X given
a predicate, can be formulated as an application of Bino-
mial distribution (Sum of Independent Bernoulli Trials), in
which each random variable (row) takes the value of 1/0 for
satisfying the predicate or not.

Let X = pn =
n∑

i=0

xi, where xi = 1 if row i satisfies the

predicate, and X̂ = kp =
k∑

i=0

x̂i. Hence, X̂ is the cardinality

of the sampled table t̂ that satisfies the predicate. pred =
X̂n
k

estimates the cardinality X for table t. We use µ =
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E[X̂] = kp to represent the expected number of rows in
the sampled table t̂ that satisfy the given predicate, with a
population variance σ2 = p(1− p).

2.2 Sampling with replacement
Random uniform sampling with replacement follows the

independent and identically distributed (i.i.d.) assumption
and is widely applied in modern machine learning (e.g. boot-
strap [9]). In this case, t̂ is randomly sampled with replace-
ment from t. The Chernoff Bound together with the Bern-
stein’s Inequality give us a concise upper error bound with
the Q-error metric.

Theorem 1. For CE over single tables, the Q-error of
random uniform sampling with replacement is bounded by

P(Q-error ≤ q) ≥ 1 − Ω − Ψ, where

Ω = min

(( eq−1

qq

)pk
, exp

(
−

k(pq − p)2

2σ2 + 2(pq − p)/3

))
,

Ψ = min

((
e
( 1
q
−1)

q
1
q

)pk
, exp

(
−

k(p− p/q)2

2σ2 + 2(p− p/q)/3

))
.

When P(Q-error ≤ q) becomes negative (i.e. Ω + Ψ >
1), we replace it with zero. Ω is the probability for over-
estimation and Ψ is the probability for under-estimation.

From Theorem 1, we can see that the (target) error q
is agnostic to the number of rows n. The bound is only
relevant to the sample size k and ground truth selectivity p.

2.3 Sampling without replacement
When samples are drawn uniformly at random without

replacement, we assume there are at least 2 sampled rows.
For simplicity, we define

ρ =

{
1− (k − 1)/n if k ≤ n/2
(1− k/n)(1 + 1/k) if k > n/2

ζ =

4/3 +
√

k(k−1)
n(n−k+1)

if k ≤ n/2

4/3 +
√

(n−k−1)(n−k)
(k+1)n

if k > n/2.

Based on the Hoeffding-Serfling Inequality and the Bernstein-
Serfling Inequality [1], we have:

Theorem 2. For CE over single tables, the Q-error of
random uniform sampling without replacement is bounded
by

P(Q-error ≤ q) ≥ 1 − Ω − Ψ, where

Ω = min

(
2 exp

( k
ζ2

(
√

2ζρσ2(pq − p) + ρ2σ4 − (pq − p)ζ − σ2ρ)
)
,
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Ψ = min
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)
,
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(
−
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ρ

))

p X
100 rows 1000 rows 10000 rows
R NR R NR R NR

0.0002 166 0.00 0.00 0.00 0.00 0.00 0.00
0.0003 333 0.00 0.00 0.00 0.00 0.12 0.00
0.0008 833 0.00 0.00 0.00 0.00 0.68 0.00
0.0010 1000 0.00 0.00 0.00 0.00 0.76 0.00
0.0017 1666 0.00 0.00 0.00 0.00 0.92 0.42
0.0050 5000 0.00 0.00 0.39 0.00 1.00 0.96
0.0083 8333 0.00 0.00 0.68 0.00 1.00 1.00
0.0100 10000 0.00 0.00 0.76 0.00 1.00 1.00
0.1667 166666 0.92 0.75 1.00 1.00 1.00 1.00
0.3333 333333 0.99 1.00 1.00 1.00 1.00 1.00
0.5000 500000 1.00 1.00 1.00 1.00 1.00 1.00
1.0000 1000000 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Confidence that the Q-error is at most 2 (i.e., q ≤ 2)
from Theorem 1 and Theorem 2. We randomly sample 100,
1000, or 10000 rows from 1 million rows. R: Sampling with
Replacement; NR: Sampling without Replacement.

Visualization. Figure 1 shows a 3-D visualization of the
probability that random uniform sampling is better than a
given Q-error at a selectivity threshold. At a small sam-
ple size such as 100 or 1K, random uniform sampling with
replacement already provides promising q-error and has a
tight bound.

3. WHEN ML IS BETTER FOR CE?
Metrics of interest. To answer when ML is better for

CE compared to simple alternatives such as sampling, met-
rics of interest include accuracy, query answering cost, and
building cost. Storage used, on the other hand, is often
less of a concern but has a direct impact on the accuracy
and the costs; both are functions of the storage as will be
shown in Table 2. For most solutions, more storage results
in better accuracy but potentially larger building and query
answering latency; for example, a sample that is as large
as the original dataset provides the best accuracy but also
the worst query latency. We discuss below scenarios when
a storage budget s exists and also when s does not exist,
trading accuracy with latency using storage as a handle.

Modeling workload vs data. Current ML-based CE
models learn from workload (e.g., LM [8] and MSCN [15]) or
data (e.g., Naru [21] and DeepDB [11]). The former learns
the mapping from predicates to true cardinality and hopes
for unchanged workload between training and testing; pred-
icates y from the training workload are required. The latter
captures the distribution and multi-column correlations in
data and is not trained with a predicate set (i.e., the model
is agnostic to workload). These distinct learning strategies
lead to different comparisons below.

Evaluating individual metrics at storage s. We first in-
spect how sampling, workload-driven ML models, and data-
driven ML models behave on each metric mentioned above
in Table 2 at storage budget s. We will compare the metrics
at different storage budget choices afterwards.

Accuracy. We leverage the upper error bound for random
sampling (Section 2) as the accuracy target for ML-based
CE and plug in the storage budget s and the test predicates
y or synthetic ŷ (depending on if the test predicates are
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(a) random uniform sampling with replacement.

(b) random uniform sampling without replacement.

Figure 1: 3D plotting of Q-errors for random uniform sampling with replacement (first row) and without replacement (second
row) with 100 samples (left), 1K samples (middle), or 10K samples (right). We show the probability that random uniform
sampling’s error (z-axis) is better than the desired Q-error (y-axis) with a predicate ground truth selectivity p (x-axis).

known) to Theorem 1 or 21 which yields an upper error
bound q on the predicates evaluated. ML-based solutions,
however, often cannot provide theoretical bounds and we
rely on empirical evaluation (i.e., eval() in Table 2) of the
trained model M on y or ŷ at storage s. An ML-based CE
solution can be useful only when it provides better than q
accuracy using the same storage s.

Notably, as discussed in Section 2, the upper error bounds
of sampling converge quickly when the storage increases; in
general, sampling has better accuracy than many current
ML-based solutions at large storage or when predicates have
high cardinality. Sampling and data-driven models are ag-
nostic to the test workload y; when y is unknown, we defer
picking synthetic ŷ to later discussion.

Query answering cost. Learned CE solutions, regardless of
workload- or data-driven, often use models with dense pa-
rameters (e.g., neural networks) and incur high query an-
swering latency since multiple costly computations such as
matrix multiplication need to be done on the entire stor-
age s. In contrast, evaluating predicates on samples takes
one pass over the storage and often can be accelerated using
heuristics (e.g., short-circuiting for conjunctive predicates
and ranking columns in terms of selectivity); the complex-
ity is at most linear to s (when no acceleration is applied).
Learned CE solutions with dense models are often slower
than evaluating predicates on samples of the same storage.
Indeed, efforts such as using GPUs and SIMD can accelerate
inference of dense models; it is yet unclear from the litera-
ture which effort could lead to a clear win. To this end, if
query answering latency is a major concern, the ML model
has to be small or uses sparse data structures (e.g., trees

1The user or downstream application decides the confidence
threshold on P(Q-error≤ q), e.g., 0.95.

Has storage 
budget s?

Run Tab.1 

Y N Compare&
aggregate 
metrics A + Q

A + Q + B

@ (given s | diff. s)  & (given 𝑦| synth 𝑦ො)    

Know 
workload 𝑦?
Y N

Figure 2: Picking a better CE solution. Given the storage
budget s, we run Table 2 and choose a better solution by ag-
gregating different metrics of interest including (A)ccuracy,
(Q)uery answering cost and (B)uilding cost. When storage
budget is unknown, such comparison is done at different s.

in which only a subset of parameters are used to compute
cardinality and thus the complexity is at most linear to s).

Building cost. As illustrated in Table 2, prior workload-
driven CE solutions [8, 15] train models upon the incom-
ing workload and predict cardinality given a query predi-
cate. The model training incurs an overhead which can be
small but also depends on adequate query predicates from
the training workload; the query predicates in later-on tests
should remain the same distribution - when there is a drift,
the training set needs to be re-collected and the model needs
to be re-built. On the other hand, prior data-driven CE
models have to be built offline with multiple passes on the
data and the training cost ranges from tens to hundreds of
minutes per-dataset as reported in [21, 11]. In comparison,
building samples incurs a one-pass scan or can be done dur-
ing data injection; in terms of the building cost for CE, sam-
pling is often much cheaper than ML-based solutions and is
agnostic to the test workload. Indeed, data changes (i.e.,
appending and changing rows and columns) are a common
problem. Both learning and sample-based solutions need to
update properly which is an open question to the literature.

Which CE solution is better? We have discussed indi-
vidual metrics that can be critical for CE, with both accu-
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Method@storage s Accuracy Query answering cost Building cost
Sampling If y known: At most linear to s. During data injection

upper bound(y, s) from Sec. 2 or
If y unknown, use synthetic ŷ: one pass over data

upper bound(ŷ, s) from Sec. 2
Workload models If y known: If dense model: When adequate y arrives, model training

eval(Ms, y) Polynomial to s* + adaptation when y drifts
Data models If y unknown, use synthetic ŷ: If sparse model: Multiple passes on data

eval(Ms, ŷ) At most linear to s + model training.

Table 2: Qualitative comparisons of sampling and ML-based CE on test queries y or ŷ and storage s. *: efforts such as SIMD
can speed up this cost. Both accuracy and query answering cost are functions of s.

racy and query answering latency depending on the storage
used. Figure 2 shows different cases to choose a better CE
solution based on if a specific storage budget s and if the
test workload y are known:

• At a specific storage budget s, we compare individ-
ual metrics in Table 2 on the given y or synthetic ŷ
depending on if the test workload y is known.

• With a flexible storage budget, ML-based CE must
provide a valid tradeoff among the metrics-of-interest
at different storage choices. We run the comparisons
in Table 2 on the given y or synthetic ŷ at different s
and compute the metric crossovers.

There are two combinations of metrics that can be inter-
esting to a database practitioner: accuracy + query cost,
and the same plus building cost2. To decide which solution
is better, the user or downstream application has to deter-
mine the weights on different metrics and how to aggregate.
For example, an approximate solution in time-critical sce-
narios can weigh more on the building and query latency.

We note that among existing workload-driven models, LM
[8] and MSCN [15] provide good accuracy and query an-
swering latency. However, there is additional building over-
head for collecting the training set, training the model, and
handling workload drifts. As exemplary data-driven ML
models, Naru [21] and DeepDB [11] demonstrate one accu-
racy/latency profile on a single test workload; their accuracy-
latency tradeoff is unclear at different storage choices. Since
theoretical error bounds for ML-based CE often do not ex-
ist, we have to rely on empirical evaluations and we refer
to [20] for more detailed analyses.

So far, ML-based solutions have not shown Pareto im-
provements over random sampling in accuracy, building and
query answering costs simultaneously. For data-driven CE
solutions in which a known y does not exist, choosing syn-
thetic ŷ to evaluate will be discussed later.

Is ML a silver bullet to CE? Beyond the metrics of in-
terest discussed above, learned database components devote
their efforts to fit to the training set and hope for unchanged
test distributions. Indeed, when this is the case, ML can
provide good accuracy (i.e., eval() in Table 2 yields low er-
rors). However, in practice a fixed and known test workload
is rare – otherwise, we may simply memorize the workload
and upon that various data structures can be built to speed
up querying the workload history and to perform proper
interpolation if necessary.

2Other combinations or considering only single metrics are
invalid; e,g., for accuracy+building cost, use a sample as
large as the original dataset; for only query answering la-
tency, give a constant answer regardless of the predicate.

For example, if we have a workload history with {predicate,
cardinality} pairs and such workload does not change at all,
we may simply look up the workload history to answer ex-
act cardinality if the test predicate has been seen. A better
way is to build LSH [6] or a k-d tree on the predicates with
leaf nodes storing the true cardinality; doing so is faster
than linear lookups and also provides exact answers. Prior
workload-driven models [8, 15] generate training and testing
predicates using the same, pre-defined procedure, which is
unlikely to happen in practice; real test workloads can never
be generated by pre-defined code – otherwise, again, we may
exploit such code and memorize the results.

One can argue that ML models learn how to better inter-
or extrapolate for unseen inputs. This is probably true, es-
pecially when the training and test workloads follow some
explicit distributions (e.g., linear, normal, zipf, functional
dependency). In practice, this is not guaranteed if we do
not know the test predicates; moreover, ML models are lossy
and often cannot achieve perfect overfit on the training set
just because real data seldom follows any presumed distri-
bution. Even if it does, we may apply the same interpo-
lation in the search and data structure mentioned above.
Strict functional dependency (e.g., Col Y = Col X + 1) also
rarely happens and many schema design guidelines suggest
avoiding such columns. Correlation mining solutions such
as CORDs [13] also detects and eliminates functional de-
pendencies, either strict or soft, to reduce the compute and
storage costs for downstream tasks.

To this end, we are not trying to discourage ML; great
opportunities remain when it is difficult or costly to store,
search, and manipulate the input space. For the problem
of single-table CE discussed in this paper, the input space
is yet simple; applying existing ML models seems to have
only marginal benefits but at the cost of accuracy loss and
compute overhead. We consider an ML-based CE to be
good only when it provides good accuracy, low building and
query answering costs at the same time, as well as operates
at different storage budget choices so that a valid tradeoff
among the metrics-of-interest can be made and chosen by a
downstream application.

Evaluating workload-agnostic CE solutions. CE so-
lutions such as sampling and data-driven models [21, 11]
are not trained with a prior workload and can be queried
with any test predicates. Deciding a fair test workload is
critical for accuracy evaluations. As shown in our bound
and Table 2, sampling already provides a tight upper error
bound when storage is high or when true cardinality is high;
that said, sampling may win easily in these scenarios. To
construct a synthetic workload ŷ for better accuracy eval-
uations, both test predicates stratified by true cardinality
and a large variety of test distributions are necessary. Prior
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work [21] has shown results stratified at three cardinality
ranges and one single test distribution. We suggest that fu-
ture evaluations show accuracy-true cardinality curves and
use more diverse test distributions.

3.1 Using small samples for ML-based CE
We have shown in Section 2 that the upper error bound

for CE with random uniform sampling with replacement is
agnostic to the original table size; random uniform sampling
performs well for single-table CE when the predicate cardi-
nality p is large and/or the sample size (storage) k is large.
Can we leverage samples to help CE in these scenarios? Un-
fortunately, during query time, we do not know the ground
truth predicate cardinality p before the query is executed.

A simple but effective bootstrapping solution here is to
keep a small sample such that if less than λ rows from the
sample satisfy the predicate, sampling will likely give an
unreliable estimate and we should leverage alternative ap-
proaches, such as ML models. On the contrary, if more than
λ rows from the sample satisfy the predicate, we can confi-
dently use the sample estimates. Providing a rule-of-thumb
sample size k and the cut-off λ that are robust and general-
izable to different tasks is still an open question.
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